Insira um problema...
Trigonometria Exemplos
Etapa 1
Subtraia dos dois lados da equação.
Etapa 2
Etapa 2.1
Fatore de .
Etapa 2.2
Fatore de .
Etapa 2.3
Fatore de .
Etapa 3
Se qualquer fator individual no lado esquerdo da equação for igual a , toda a expressão será igual a .
Etapa 4
Etapa 4.1
Defina como igual a .
Etapa 4.2
Resolva para .
Etapa 4.2.1
Obtenha a tangente inversa dos dois lados da equação para extrair de dentro da tangente.
Etapa 4.2.2
Simplifique o lado direito.
Etapa 4.2.2.1
O valor exato de é .
Etapa 4.2.3
A função da tangente é positiva no primeiro e no terceiro quadrantes. Para encontrar a segunda solução, subtraia o ângulo de referência de para determinar a solução no quarto quadrante.
Etapa 4.2.4
Some e .
Etapa 4.2.5
Encontre o período de .
Etapa 4.2.5.1
O período da função pode ser calculado ao usar .
Etapa 4.2.5.2
Substitua por na fórmula do período.
Etapa 4.2.5.3
O valor absoluto é a distância entre um número e zero. A distância entre e é .
Etapa 4.2.5.4
Divida por .
Etapa 4.2.6
O período da função é . Portanto, os valores se repetirão a cada graus nas duas direções.
, para qualquer número inteiro
, para qualquer número inteiro
, para qualquer número inteiro
Etapa 5
Etapa 5.1
Defina como igual a .
Etapa 5.2
Resolva para .
Etapa 5.2.1
Some aos dois lados da equação.
Etapa 5.2.2
Pegue a raiz especificada de ambos os lados da equação para eliminar o expoente no lado esquerdo.
Etapa 5.2.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 5.2.3.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 5.2.3.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 5.2.3.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 5.2.4
Estabeleça cada uma das soluções para resolver .
Etapa 5.2.5
Resolva em .
Etapa 5.2.5.1
Obtenha a secante inversa dos dois lados da equação para extrair de dentro da secante.
Etapa 5.2.5.2
Simplifique o lado direito.
Etapa 5.2.5.2.1
O valor exato de é .
Etapa 5.2.5.3
A função secante é positiva no primeiro e no quarto quadrantes. Para encontrar a segunda solução, subtraia o ângulo de referência de para determinar a solução no quarto quadrante.
Etapa 5.2.5.4
Subtraia de .
Etapa 5.2.5.5
Encontre o período de .
Etapa 5.2.5.5.1
O período da função pode ser calculado ao usar .
Etapa 5.2.5.5.2
Substitua por na fórmula do período.
Etapa 5.2.5.5.3
O valor absoluto é a distância entre um número e zero. A distância entre e é .
Etapa 5.2.5.5.4
Divida por .
Etapa 5.2.5.6
O período da função é . Portanto, os valores se repetirão a cada graus nas duas direções.
, para qualquer número inteiro
, para qualquer número inteiro
Etapa 5.2.6
Resolva em .
Etapa 5.2.6.1
Obtenha a secante inversa dos dois lados da equação para extrair de dentro da secante.
Etapa 5.2.6.2
Simplifique o lado direito.
Etapa 5.2.6.2.1
O valor exato de é .
Etapa 5.2.6.3
A função secante é negativa no segundo e no terceiro quadrantes. Para encontrar a segunda solução, subtraia o ângulo de referência de para determinar a solução no terceiro quadrante.
Etapa 5.2.6.4
Subtraia de .
Etapa 5.2.6.5
Encontre o período de .
Etapa 5.2.6.5.1
O período da função pode ser calculado ao usar .
Etapa 5.2.6.5.2
Substitua por na fórmula do período.
Etapa 5.2.6.5.3
O valor absoluto é a distância entre um número e zero. A distância entre e é .
Etapa 5.2.6.5.4
Divida por .
Etapa 5.2.6.6
O período da função é . Portanto, os valores se repetirão a cada graus nas duas direções.
, para qualquer número inteiro
, para qualquer número inteiro
Etapa 5.2.7
Liste todas as soluções.
, para qualquer número inteiro
Etapa 5.2.8
Consolide as respostas.
, para qualquer número inteiro
, para qualquer número inteiro
, para qualquer número inteiro
Etapa 6
A solução final são todos os valores que tornam verdadeiro.
, para qualquer número inteiro
Etapa 7
Consolide e em .
, para qualquer número inteiro