Insira um problema...
Trigonometria Exemplos
Etapa 1
Etapa 1.1
Subtraia dos dois lados da equação.
Etapa 1.2
Subtraia de .
Etapa 2
Etapa 2.1
Divida cada termo em por .
Etapa 2.2
Simplifique o lado esquerdo.
Etapa 2.2.1
Cancele o fator comum de .
Etapa 2.2.1.1
Cancele o fator comum.
Etapa 2.2.1.2
Divida por .
Etapa 2.3
Simplifique o lado direito.
Etapa 2.3.1
Mova o número negativo para a frente da fração.
Etapa 3
Obtenha o seno inverso dos dois lados da equação para extrair de dentro do seno.
Etapa 4
Etapa 4.1
Avalie .
Etapa 5
Etapa 5.1
Divida cada termo em por .
Etapa 5.2
Simplifique o lado esquerdo.
Etapa 5.2.1
Cancele o fator comum de .
Etapa 5.2.1.1
Cancele o fator comum.
Etapa 5.2.1.2
Divida por .
Etapa 5.3
Simplifique o lado direito.
Etapa 5.3.1
Divida por .
Etapa 6
A função do seno é negativa no terceiro e no quarto quadrantes. Para encontrar a segunda solução, subtraia a solução de para determinar um ângulo de referência. Depois, some esse ângulo de referência com para encontrar a solução no terceiro quadrante.
Etapa 7
Etapa 7.1
Subtraia de .
Etapa 7.2
O ângulo resultante de é positivo, menor do que e coterminal com .
Etapa 7.3
Divida cada termo em por e simplifique.
Etapa 7.3.1
Divida cada termo em por .
Etapa 7.3.2
Simplifique o lado esquerdo.
Etapa 7.3.2.1
Cancele o fator comum de .
Etapa 7.3.2.1.1
Cancele o fator comum.
Etapa 7.3.2.1.2
Divida por .
Etapa 7.3.3
Simplifique o lado direito.
Etapa 7.3.3.1
Divida por .
Etapa 8
Etapa 8.1
O período da função pode ser calculado ao usar .
Etapa 8.2
Substitua por na fórmula do período.
Etapa 8.3
O valor absoluto é a distância entre um número e zero. A distância entre e é .
Etapa 8.4
Divida por .
Etapa 9
Etapa 9.1
Some com para encontrar o ângulo positivo.
Etapa 9.2
Subtraia de .
Etapa 9.3
Liste os novos ângulos.
Etapa 10
O período da função é . Portanto, os valores se repetirão a cada graus nas duas direções.
, para qualquer número inteiro