Insira um problema...
Pré-cálculo Exemplos
Etapa 1
Etapa 1.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.2
Diferencie usando a regra da cadeia, que determina que é , em que e .
Etapa 1.2.1
Para aplicar a regra da cadeia, defina como .
Etapa 1.2.2
A derivada de em relação a é .
Etapa 1.2.3
Substitua todas as ocorrências de por .
Etapa 1.3
Diferencie.
Etapa 1.3.1
Multiplique por .
Etapa 1.3.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.3.3
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.4
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.5
Multiplique por .
Etapa 1.3.6
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.7
Simplifique a expressão.
Etapa 1.3.7.1
Some e .
Etapa 1.3.7.2
Multiplique por .
Etapa 2
Etapa 2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2
Diferencie usando a regra da cadeia, que determina que é , em que e .
Etapa 2.2.1
Para aplicar a regra da cadeia, defina como .
Etapa 2.2.2
A derivada de em relação a é .
Etapa 2.2.3
Substitua todas as ocorrências de por .
Etapa 2.3
Diferencie.
Etapa 2.3.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.3.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3.4
Multiplique por .
Etapa 2.3.5
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.6
Simplifique a expressão.
Etapa 2.3.6.1
Some e .
Etapa 2.3.6.2
Multiplique por .
Etapa 3
Para encontrar os valores máximo local e mínimo local da função, defina a derivada como igual a e resolva.
Etapa 4
Etapa 4.1
Divida cada termo em por .
Etapa 4.2
Simplifique o lado esquerdo.
Etapa 4.2.1
Cancele o fator comum de .
Etapa 4.2.1.1
Cancele o fator comum.
Etapa 4.2.1.2
Divida por .
Etapa 4.3
Simplifique o lado direito.
Etapa 4.3.1
Divida por .
Etapa 5
Obtenha o seno inverso dos dois lados da equação para extrair de dentro do seno.
Etapa 6
Etapa 6.1
O valor exato de é .
Etapa 7
Some aos dois lados da equação.
Etapa 8
Etapa 8.1
Divida cada termo em por .
Etapa 8.2
Simplifique o lado esquerdo.
Etapa 8.2.1
Cancele o fator comum de .
Etapa 8.2.1.1
Cancele o fator comum.
Etapa 8.2.1.2
Divida por .
Etapa 9
A função do seno é positiva no primeiro e no segundo quadrantes. Para encontrar a segunda solução, subtraia o ângulo de referência de para determinar a solução no segundo quadrante.
Etapa 10
Etapa 10.1
Subtraia de .
Etapa 10.2
Mova todos os termos que não contêm para o lado direito da equação.
Etapa 10.2.1
Some aos dois lados da equação.
Etapa 10.2.2
Some e .
Etapa 10.3
Divida cada termo em por e simplifique.
Etapa 10.3.1
Divida cada termo em por .
Etapa 10.3.2
Simplifique o lado esquerdo.
Etapa 10.3.2.1
Cancele o fator comum de .
Etapa 10.3.2.1.1
Cancele o fator comum.
Etapa 10.3.2.1.2
Divida por .
Etapa 10.3.3
Simplifique o lado direito.
Etapa 10.3.3.1
Cancele o fator comum de .
Etapa 10.3.3.1.1
Cancele o fator comum.
Etapa 10.3.3.1.2
Divida por .
Etapa 11
A solução para a equação .
Etapa 12
Avalie a segunda derivada em . Se a segunda derivada for positiva, este será um mínimo local. Se for negativa, será um máximo local.
Etapa 13
Etapa 13.1
Cancele o fator comum de .
Etapa 13.1.1
Cancele o fator comum.
Etapa 13.1.2
Reescreva a expressão.
Etapa 13.2
Subtraia de .
Etapa 13.3
O valor exato de é .
Etapa 13.4
Multiplique por .
Etapa 14
é um máximo local, porque o valor da segunda derivada é negativo. Isso é conhecido como teste da segunda derivada.
é um máximo local
Etapa 15
Etapa 15.1
Substitua a variável por na expressão.
Etapa 15.2
Simplifique o resultado.
Etapa 15.2.1
Cancele o fator comum de .
Etapa 15.2.1.1
Cancele o fator comum.
Etapa 15.2.1.2
Reescreva a expressão.
Etapa 15.2.2
Subtraia de .
Etapa 15.2.3
O valor exato de é .
Etapa 15.2.4
Multiplique por .
Etapa 15.2.5
A resposta final é .
Etapa 16
Avalie a segunda derivada em . Se a segunda derivada for positiva, este será um mínimo local. Se for negativa, será um máximo local.
Etapa 17
Etapa 17.1
Subtraia de .
Etapa 17.2
Aplique o ângulo de referência encontrando o ângulo com valores trigonométricos equivalentes no primeiro quadrante. Torne a expressão negativa, pois o cosseno é negativo no segundo quadrante.
Etapa 17.3
O valor exato de é .
Etapa 17.4
Multiplique .
Etapa 17.4.1
Multiplique por .
Etapa 17.4.2
Multiplique por .
Etapa 18
é um mínimo local, porque o valor da segunda derivada é positivo. Isso é conhecido como teste da segunda derivada.
é um mínimo local
Etapa 19
Etapa 19.1
Substitua a variável por na expressão.
Etapa 19.2
Simplifique o resultado.
Etapa 19.2.1
Subtraia de .
Etapa 19.2.2
Aplique o ângulo de referência encontrando o ângulo com valores trigonométricos equivalentes no primeiro quadrante. Torne a expressão negativa, pois o cosseno é negativo no segundo quadrante.
Etapa 19.2.3
O valor exato de é .
Etapa 19.2.4
Multiplique .
Etapa 19.2.4.1
Multiplique por .
Etapa 19.2.4.2
Multiplique por .
Etapa 19.2.5
A resposta final é .
Etapa 20
Esses são os extremos locais para .
é um máximo local
é um mínimo local
Etapa 21