Insira um problema...
Pré-cálculo Exemplos
Etapa 1
Etapa 1.1
Divida cada termo em por .
Etapa 1.2
Simplifique o lado esquerdo.
Etapa 1.2.1
Cancele o fator comum de .
Etapa 1.2.1.1
Cancele o fator comum.
Etapa 1.2.1.2
Reescreva a expressão.
Etapa 1.3
Simplifique o lado direito.
Etapa 1.3.1
Separe as frações.
Etapa 1.3.2
Reescreva em termos de senos e cossenos.
Etapa 1.3.3
Multiplique pelo inverso da fração para dividir por .
Etapa 1.3.4
Escreva como uma fração com denominador .
Etapa 1.3.5
Cancele o fator comum de .
Etapa 1.3.5.1
Cancele o fator comum.
Etapa 1.3.5.2
Reescreva a expressão.
Etapa 1.3.6
Divida por .
Etapa 2
Reescreva a equação como .
Etapa 3
Etapa 3.1
Divida cada termo em por .
Etapa 3.2
Simplifique o lado esquerdo.
Etapa 3.2.1
Cancele o fator comum de .
Etapa 3.2.1.1
Cancele o fator comum.
Etapa 3.2.1.2
Divida por .
Etapa 3.3
Simplifique o lado direito.
Etapa 3.3.1
Mova o número negativo para a frente da fração.
Etapa 4
Obtenha o cosseno inverso dos dois lados da equação para extrair de dentro do cosseno.
Etapa 5
Etapa 5.1
O valor exato de é .
Etapa 6
A função do cosseno é negativa no segundo e no terceiro quadrantes. Para encontrar a segunda solução, subtraia o ângulo de referência de para determinar a solução no terceiro quadrante.
Etapa 7
Etapa 7.1
Para escrever como fração com um denominador comum, multiplique por .
Etapa 7.2
Combine frações.
Etapa 7.2.1
Combine e .
Etapa 7.2.2
Combine os numeradores em relação ao denominador comum.
Etapa 7.3
Simplifique o numerador.
Etapa 7.3.1
Multiplique por .
Etapa 7.3.2
Subtraia de .
Etapa 8
Etapa 8.1
O período da função pode ser calculado ao usar .
Etapa 8.2
Substitua por na fórmula do período.
Etapa 8.3
O valor absoluto é a distância entre um número e zero. A distância entre e é .
Etapa 8.4
Divida por .
Etapa 9
O período da função é . Portanto, os valores se repetirão a cada radianos nas duas direções.
, para qualquer número inteiro