Insira um problema...
Pré-cálculo Exemplos
Etapa 1
Etapa 1.1
Fatore de .
Etapa 1.1.1
Fatore de .
Etapa 1.1.2
Fatore de .
Etapa 1.1.3
Fatore de .
Etapa 1.2
Mova o número negativo para a frente da fração.
Etapa 2
Etapa 2.1
Encontrar o MMC de uma lista de valores é o mesmo que encontrar o MMC dos denominadores desses valores.
Etapa 2.2
Como contém números e variáveis, há quatro etapas para encontrar o MMC. Encontre o MMC das partes numéricas, variáveis e variáveis compostas. Depois, multiplique tudo.
As etapas para encontrar o MMC de são:
1. Encontre o MMC da parte numérica .
2. Encontre o MMC da parte variável .
3. Encontre o MMC da parte variável composta .
4. Multiplique todos os MMCs juntos.
Etapa 2.3
O MMC é o menor número positivo pelo qual todos os números se dividem uniformemente.
1. Liste os fatores primos de cada número.
2. Multiplique cada fator pelo maior número de vezes em que ele ocorre em cada número.
Etapa 2.4
O número não é primo porque tem apenas um fator positivo, que é ele mesmo.
Não é primo
Etapa 2.5
O MMC de é o resultado da multiplicação de todos os fatores primos pelo maior número de vezes que eles ocorrem em qualquer um dos números.
Etapa 2.6
O fator de é o próprio .
ocorre vez.
Etapa 2.7
O MMC de é o resultado da multiplicação de todos os fatores primos pelo maior número de vezes que eles ocorrem em qualquer um dos termos.
Etapa 2.8
O fator de é o próprio .
ocorre vez.
Etapa 2.9
O MMC de é o resultado da multiplicação de todos os fatores pelo maior número de vezes que eles ocorrem em qualquer um dos termos.
Etapa 2.10
O mínimo múltiplo comum de alguns números é o menor número do qual os números são fatores.
Etapa 3
Etapa 3.1
Multiplique cada termo em por .
Etapa 3.2
Simplifique o lado esquerdo.
Etapa 3.2.1
Simplifique cada termo.
Etapa 3.2.1.1
Cancele o fator comum de .
Etapa 3.2.1.1.1
Cancele o fator comum.
Etapa 3.2.1.1.2
Reescreva a expressão.
Etapa 3.2.1.2
Expanda usando o método FOIL.
Etapa 3.2.1.2.1
Aplique a propriedade distributiva.
Etapa 3.2.1.2.2
Aplique a propriedade distributiva.
Etapa 3.2.1.2.3
Aplique a propriedade distributiva.
Etapa 3.2.1.3
Combine os termos opostos em .
Etapa 3.2.1.3.1
Reorganize os fatores nos termos e .
Etapa 3.2.1.3.2
Some e .
Etapa 3.2.1.3.3
Some e .
Etapa 3.2.1.4
Simplifique cada termo.
Etapa 3.2.1.4.1
Multiplique por .
Etapa 3.2.1.4.2
Multiplique por .
Etapa 3.2.1.5
Cancele o fator comum de .
Etapa 3.2.1.5.1
Fatore de .
Etapa 3.2.1.5.2
Cancele o fator comum.
Etapa 3.2.1.5.3
Reescreva a expressão.
Etapa 3.3
Simplifique o lado direito.
Etapa 3.3.1
Cancele o fator comum de .
Etapa 3.3.1.1
Mova o negativo de maior ordem em para o numerador.
Etapa 3.3.1.2
Cancele o fator comum.
Etapa 3.3.1.3
Reescreva a expressão.
Etapa 4
Etapa 4.1
Some aos dois lados da equação.
Etapa 4.2
Combine os termos opostos em .
Etapa 4.2.1
Some e .
Etapa 4.2.2
Some e .
Etapa 4.3
Fatore de .
Etapa 4.3.1
Fatore de .
Etapa 4.3.2
Fatore de .
Etapa 4.3.3
Fatore de .
Etapa 4.4
Se qualquer fator individual no lado esquerdo da equação for igual a , toda a expressão será igual a .
Etapa 4.5
Defina como igual a .
Etapa 4.6
Defina como igual a e resolva para .
Etapa 4.6.1
Defina como igual a .
Etapa 4.6.2
Subtraia dos dois lados da equação.
Etapa 4.7
A solução final são todos os valores que tornam verdadeiro.
Etapa 5
Exclua as soluções que não tornam verdadeira.