Insira um problema...
Pré-cálculo Exemplos
Etapa 1
Etapa 1.1
Mova todos os termos que não contêm para o lado direito da equação.
Etapa 1.1.1
Subtraia dos dois lados da equação.
Etapa 1.1.2
Some aos dois lados da equação.
Etapa 1.1.3
Subtraia dos dois lados da equação.
Etapa 1.2
Complete o quadrado de .
Etapa 1.2.1
Use a forma para encontrar os valores de , e .
Etapa 1.2.2
Considere a forma de vértice de uma parábola.
Etapa 1.2.3
Encontre o valor de usando a fórmula .
Etapa 1.2.3.1
Substitua os valores de e na fórmula .
Etapa 1.2.3.2
Simplifique o lado direito.
Etapa 1.2.3.2.1
Cancele o fator comum de .
Etapa 1.2.3.2.1.1
Cancele o fator comum.
Etapa 1.2.3.2.1.2
Reescreva a expressão.
Etapa 1.2.3.2.2
Mova o número negativo para a frente da fração.
Etapa 1.2.4
Encontre o valor de usando a fórmula .
Etapa 1.2.4.1
Substitua os valores de , e na fórmula .
Etapa 1.2.4.2
Simplifique o lado direito.
Etapa 1.2.4.2.1
Simplifique cada termo.
Etapa 1.2.4.2.1.1
Eleve à potência de .
Etapa 1.2.4.2.1.2
Multiplique por .
Etapa 1.2.4.2.1.3
Cancele o fator comum de e .
Etapa 1.2.4.2.1.3.1
Fatore de .
Etapa 1.2.4.2.1.3.2
Cancele os fatores comuns.
Etapa 1.2.4.2.1.3.2.1
Fatore de .
Etapa 1.2.4.2.1.3.2.2
Cancele o fator comum.
Etapa 1.2.4.2.1.3.2.3
Reescreva a expressão.
Etapa 1.2.4.2.1.4
Mova o número negativo para a frente da fração.
Etapa 1.2.4.2.1.5
Multiplique .
Etapa 1.2.4.2.1.5.1
Multiplique por .
Etapa 1.2.4.2.1.5.2
Multiplique por .
Etapa 1.2.4.2.2
Para escrever como fração com um denominador comum, multiplique por .
Etapa 1.2.4.2.3
Combine e .
Etapa 1.2.4.2.4
Combine os numeradores em relação ao denominador comum.
Etapa 1.2.4.2.5
Simplifique o numerador.
Etapa 1.2.4.2.5.1
Multiplique por .
Etapa 1.2.4.2.5.2
Some e .
Etapa 1.2.4.2.6
Mova o número negativo para a frente da fração.
Etapa 1.2.5
Substitua os valores de , e na forma do vértice .
Etapa 1.3
Defina como igual ao novo lado direito.
Etapa 2
Use a forma de vértice, , para determinar os valores de , e .
Etapa 3
Como o valor de é negativo, a parábola abre para a esquerda.
Abre para a esquerda
Etapa 4
Encontre o vértice .
Etapa 5
Etapa 5.1
Encontre a distância do vértice até um foco da parábola usando a seguinte fórmula.
Etapa 5.2
Substitua o valor de na fórmula.
Etapa 5.3
Simplifique.
Etapa 5.3.1
Multiplique por .
Etapa 5.3.2
Mova o número negativo para a frente da fração.
Etapa 6
Etapa 6.1
O foco de uma parábola pode ser encontrado ao somar com a coordenada x , se a parábola abrir para a esquerda ou a direita.
Etapa 6.2
Substitua os valores conhecidos de , e na fórmula e simplifique.
Etapa 7
Para encontrar o eixo de simetria, encontre a reta que passa pelo vértice e o foco.
Etapa 8
Etapa 8.1
A diretriz de uma parábola é a reta vertical encontrada ao subtrair da coordenada x do vértice se a parábola abrir para a esquerda ou a direita.
Etapa 8.2
Substitua os valores conhecidos de e na fórmula e simplifique.
Etapa 9
Use as propriedades da parábola para analisá-la e representá-la graficamente.
Direção: abre para a esquerda
Vértice:
Foco:
Eixo de simetria:
Diretriz:
Etapa 10