Pré-cálculo Exemplos

Converta em Notação de Intervalos 4x^4-25x^2+36<=0
Etapa 1
Substitua na equação. A fórmula quadrática ficará mais fácil de usar.
Etapa 2
Fatore por agrupamento.
Toque para ver mais passagens...
Etapa 2.1
Para um polinômio da forma , reescreva o termo do meio como uma soma de dois termos cujo produto é e cuja soma é .
Toque para ver mais passagens...
Etapa 2.1.1
Fatore de .
Etapa 2.1.2
Reescreva como mais
Etapa 2.1.3
Aplique a propriedade distributiva.
Etapa 2.2
Fatore o máximo divisor comum de cada grupo.
Toque para ver mais passagens...
Etapa 2.2.1
Agrupe os dois primeiros termos e os dois últimos termos.
Etapa 2.2.2
Fatore o máximo divisor comum (MDC) de cada grupo.
Etapa 2.3
Fatore o polinômio desmembrando o máximo divisor comum, .
Etapa 3
Se qualquer fator individual no lado esquerdo da equação for igual a , toda a expressão será igual a .
Etapa 4
Defina como igual a e resolva para .
Toque para ver mais passagens...
Etapa 4.1
Defina como igual a .
Etapa 4.2
Resolva para .
Toque para ver mais passagens...
Etapa 4.2.1
Some aos dois lados da equação.
Etapa 4.2.2
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 4.2.2.1
Divida cada termo em por .
Etapa 4.2.2.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 4.2.2.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 4.2.2.2.1.1
Cancele o fator comum.
Etapa 4.2.2.2.1.2
Divida por .
Etapa 5
Defina como igual a e resolva para .
Toque para ver mais passagens...
Etapa 5.1
Defina como igual a .
Etapa 5.2
Some aos dois lados da equação.
Etapa 6
A solução final são todos os valores que tornam verdadeiro.
Etapa 7
Substitua o valor real de de volta na equação resolvida.
Etapa 8
Resolva a primeira equação para .
Etapa 9
Resolva a equação para .
Toque para ver mais passagens...
Etapa 9.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Etapa 9.2
Simplifique .
Toque para ver mais passagens...
Etapa 9.2.1
Reescreva como .
Etapa 9.2.2
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 9.2.2.1
Reescreva como .
Etapa 9.2.2.2
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Etapa 9.2.3
Simplifique o denominador.
Toque para ver mais passagens...
Etapa 9.2.3.1
Reescreva como .
Etapa 9.2.3.2
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Etapa 9.3
A solução completa é resultado das partes positiva e negativa da solução.
Toque para ver mais passagens...
Etapa 9.3.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 9.3.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 9.3.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 10
Resolva a segunda equação para .
Etapa 11
Resolva a equação para .
Toque para ver mais passagens...
Etapa 11.1
Remova os parênteses.
Etapa 11.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Etapa 11.3
Simplifique .
Toque para ver mais passagens...
Etapa 11.3.1
Reescreva como .
Etapa 11.3.2
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Etapa 11.4
A solução completa é resultado das partes positiva e negativa da solução.
Toque para ver mais passagens...
Etapa 11.4.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 11.4.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 11.4.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 12
A solução para é .
Etapa 13
Use cada raiz para criar intervalos de teste.
Etapa 14
Escolha um valor de teste de cada intervalo e substitua esse valor pela desigualdade original para determinar quais intervalos satisfazem a desigualdade.
Toque para ver mais passagens...
Etapa 14.1
Teste um valor no intervalo e veja se ele torna a desigualdade verdadeira.
Toque para ver mais passagens...
Etapa 14.1.1
Escolha um valor no intervalo e veja se ele torna a desigualdade original verdadeira.
Etapa 14.1.2
Substitua por na desigualdade original.
Etapa 14.1.3
O lado esquerdo é maior do que o lado direito , o que significa que a afirmação em questão é falsa.
False
False
Etapa 14.2
Teste um valor no intervalo e veja se ele torna a desigualdade verdadeira.
Toque para ver mais passagens...
Etapa 14.2.1
Escolha um valor no intervalo e veja se ele torna a desigualdade original verdadeira.
Etapa 14.2.2
Substitua por na desigualdade original.
Etapa 14.2.3
O lado esquerdo é menor do que o lado direito , o que significa que a afirmação em questão é sempre verdadeira.
True
True
Etapa 14.3
Teste um valor no intervalo e veja se ele torna a desigualdade verdadeira.
Toque para ver mais passagens...
Etapa 14.3.1
Escolha um valor no intervalo e veja se ele torna a desigualdade original verdadeira.
Etapa 14.3.2
Substitua por na desigualdade original.
Etapa 14.3.3
O lado esquerdo é maior do que o lado direito , o que significa que a afirmação em questão é falsa.
False
False
Etapa 14.4
Teste um valor no intervalo e veja se ele torna a desigualdade verdadeira.
Toque para ver mais passagens...
Etapa 14.4.1
Escolha um valor no intervalo e veja se ele torna a desigualdade original verdadeira.
Etapa 14.4.2
Substitua por na desigualdade original.
Etapa 14.4.3
O lado esquerdo é menor do que o lado direito , o que significa que a afirmação em questão é sempre verdadeira.
True
True
Etapa 14.5
Teste um valor no intervalo e veja se ele torna a desigualdade verdadeira.
Toque para ver mais passagens...
Etapa 14.5.1
Escolha um valor no intervalo e veja se ele torna a desigualdade original verdadeira.
Etapa 14.5.2
Substitua por na desigualdade original.
Etapa 14.5.3
O lado esquerdo é maior do que o lado direito , o que significa que a afirmação em questão é falsa.
False
False
Etapa 14.6
Compare os intervalos para determinar quais satisfazem a desigualdade original.
Falso
Verdadeiro
Falso
Verdadeiro
Falso
Falso
Verdadeiro
Falso
Verdadeiro
Falso
Etapa 15
A solução consiste em todos os intervalos verdadeiros.
ou
Etapa 16
Converta a desigualdade em notação de intervalo.
Etapa 17