Insira um problema...
Pré-cálculo Exemplos
Etapa 1
Etapa 1.1
Avalie o limite do numerador e o limite do denominador.
Etapa 1.1.1
Obtenha o limite do numerador e o limite do denominador.
Etapa 1.1.2
Avalie o limite do numerador.
Etapa 1.1.2.1
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 1.1.2.2
Mova o expoente de para fora do limite usando a regra da multiplicação de potências.
Etapa 1.1.2.3
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 1.1.2.4
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 1.1.2.5
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 1.1.2.6
Simplifique os termos.
Etapa 1.1.2.6.1
Avalie o limite de substituindo por .
Etapa 1.1.2.6.2
Simplifique a resposta.
Etapa 1.1.2.6.2.1
Simplifique cada termo.
Etapa 1.1.2.6.2.1.1
Some e .
Etapa 1.1.2.6.2.1.2
Eleve à potência de .
Etapa 1.1.2.6.2.1.3
Multiplique por .
Etapa 1.1.2.6.2.2
Subtraia de .
Etapa 1.1.3
Avalie o limite de substituindo por .
Etapa 1.1.4
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 1.2
Como tem forma indeterminada, aplique a regra de l'Hôpital. De acordo com a regra de l'Hôpital, o limite de um quociente de funções é igual ao limite do quociente de suas derivadas.
Etapa 1.3
Encontre a derivada do numerador e do denominador.
Etapa 1.3.1
Diferencie o numerador e o denominador.
Etapa 1.3.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.3.3
Avalie .
Etapa 1.3.3.1
Diferencie usando a regra da cadeia, que determina que é , em que e .
Etapa 1.3.3.1.1
Para aplicar a regra da cadeia, defina como .
Etapa 1.3.3.1.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.3.1.3
Substitua todas as ocorrências de por .
Etapa 1.3.3.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.3.3.3
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.3.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.3.5
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.3.6
Multiplique por .
Etapa 1.3.3.7
Subtraia de .
Etapa 1.3.3.8
Multiplique por .
Etapa 1.3.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.5
Some e .
Etapa 1.3.6
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.4
Divida por .
Etapa 2
Etapa 2.1
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 2.2
Mova o expoente de para fora do limite usando a regra da multiplicação de potências.
Etapa 2.3
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 2.4
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 2.5
Simplifique os termos.
Etapa 2.5.1
Avalie o limite de substituindo por .
Etapa 2.5.2
Simplifique a resposta.
Etapa 2.5.2.1
Some e .
Etapa 2.5.2.2
Eleve à potência de .
Etapa 2.5.2.3
Multiplique por .