Insira um problema...
Pré-cálculo Exemplos
Etapa 1
Etapa 1.1
Avalie o limite do numerador e o limite do denominador.
Etapa 1.1.1
Obtenha o limite do numerador e o limite do denominador.
Etapa 1.1.2
Avalie o limite do numerador.
Etapa 1.1.2.1
Avalie o limite.
Etapa 1.1.2.1.1
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 1.1.2.1.2
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 1.1.2.1.3
Mova o expoente de para fora do limite usando a regra da multiplicação de potências.
Etapa 1.1.2.1.4
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 1.1.2.2
Avalie o limite de substituindo por .
Etapa 1.1.2.3
Simplifique a resposta.
Etapa 1.1.2.3.1
Simplifique cada termo.
Etapa 1.1.2.3.1.1
Aplique a regra do produto a .
Etapa 1.1.2.3.1.2
Um elevado a qualquer potência é um.
Etapa 1.1.2.3.1.3
Eleve à potência de .
Etapa 1.1.2.3.1.4
Cancele o fator comum de .
Etapa 1.1.2.3.1.4.1
Cancele o fator comum.
Etapa 1.1.2.3.1.4.2
Reescreva a expressão.
Etapa 1.1.2.3.1.5
Multiplique por .
Etapa 1.1.2.3.2
Subtraia de .
Etapa 1.1.3
Avalie o limite do denominador.
Etapa 1.1.3.1
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 1.1.3.2
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 1.1.3.3
Mova o expoente de para fora do limite usando a regra da multiplicação de potências.
Etapa 1.1.3.4
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 1.1.3.5
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 1.1.3.6
Avalie os limites substituindo por todas as ocorrências de .
Etapa 1.1.3.6.1
Avalie o limite de substituindo por .
Etapa 1.1.3.6.2
Avalie o limite de substituindo por .
Etapa 1.1.3.7
Simplifique a resposta.
Etapa 1.1.3.7.1
Simplifique cada termo.
Etapa 1.1.3.7.1.1
Aplique a regra do produto a .
Etapa 1.1.3.7.1.2
Um elevado a qualquer potência é um.
Etapa 1.1.3.7.1.3
Eleve à potência de .
Etapa 1.1.3.7.1.4
Cancele o fator comum de .
Etapa 1.1.3.7.1.4.1
Fatore de .
Etapa 1.1.3.7.1.4.2
Fatore de .
Etapa 1.1.3.7.1.4.3
Cancele o fator comum.
Etapa 1.1.3.7.1.4.4
Reescreva a expressão.
Etapa 1.1.3.7.1.5
Combine e .
Etapa 1.1.3.7.1.6
Combine e .
Etapa 1.1.3.7.1.7
Mova o número negativo para a frente da fração.
Etapa 1.1.3.7.2
Combine os numeradores em relação ao denominador comum.
Etapa 1.1.3.7.3
Subtraia de .
Etapa 1.1.3.7.4
Divida por .
Etapa 1.1.3.7.5
Subtraia de .
Etapa 1.1.3.7.6
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 1.1.3.8
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 1.1.4
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 1.2
Como tem forma indeterminada, aplique a regra de l'Hôpital. De acordo com a regra de l'Hôpital, o limite de um quociente de funções é igual ao limite do quociente de suas derivadas.
Etapa 1.3
Encontre a derivada do numerador e do denominador.
Etapa 1.3.1
Diferencie o numerador e o denominador.
Etapa 1.3.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.3.3
Avalie .
Etapa 1.3.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.3.3
Multiplique por .
Etapa 1.3.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.5
Some e .
Etapa 1.3.6
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.3.7
Avalie .
Etapa 1.3.7.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.7.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.7.3
Multiplique por .
Etapa 1.3.8
Avalie .
Etapa 1.3.8.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.8.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.8.3
Multiplique por .
Etapa 1.3.9
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.10
Some e .
Etapa 2
Etapa 2.1
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 2.2
Divida o limite usando a regra do quociente dos limites no limite em que se aproxima de .
Etapa 2.3
Mova o expoente de para fora do limite usando a regra da multiplicação de potências.
Etapa 2.4
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 2.5
Mova o termo para fora do limite, porque ele é constante em relação a .
Etapa 2.6
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 3
Etapa 3.1
Avalie o limite de substituindo por .
Etapa 3.2
Avalie o limite de substituindo por .
Etapa 4
Etapa 4.1
Simplifique o numerador.
Etapa 4.1.1
Aplique a regra do produto a .
Etapa 4.1.2
Um elevado a qualquer potência é um.
Etapa 4.1.3
Eleve à potência de .
Etapa 4.2
Simplifique o denominador.
Etapa 4.2.1
Cancele o fator comum de .
Etapa 4.2.1.1
Fatore de .
Etapa 4.2.1.2
Cancele o fator comum.
Etapa 4.2.1.3
Reescreva a expressão.
Etapa 4.2.2
Multiplique por .
Etapa 4.2.3
Subtraia de .
Etapa 4.3
Divida por .
Etapa 4.4
Cancele o fator comum de .
Etapa 4.4.1
Fatore de .
Etapa 4.4.2
Cancele o fator comum.
Etapa 4.4.3
Reescreva a expressão.