Pré-cálculo Exemplos

Löse nach x auf cos(x)^2+cos(x)=1
Etapa 1
Substitua por .
Etapa 2
Subtraia dos dois lados da equação.
Etapa 3
Use a fórmula quadrática para encontrar as soluções.
Etapa 4
Substitua os valores , e na fórmula quadrática e resolva .
Etapa 5
Simplifique.
Toque para ver mais passagens...
Etapa 5.1
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 5.1.1
Um elevado a qualquer potência é um.
Etapa 5.1.2
Multiplique .
Toque para ver mais passagens...
Etapa 5.1.2.1
Multiplique por .
Etapa 5.1.2.2
Multiplique por .
Etapa 5.1.3
Some e .
Etapa 5.2
Multiplique por .
Etapa 6
A resposta final é a combinação das duas soluções.
Etapa 7
Substitua por .
Etapa 8
Estabeleça cada uma das soluções para resolver .
Etapa 9
Resolva em .
Toque para ver mais passagens...
Etapa 9.1
Obtenha o cosseno inverso dos dois lados da equação para extrair de dentro do cosseno.
Etapa 9.2
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 9.2.1
Avalie .
Etapa 9.3
A função do cosseno é negativa no segundo e no terceiro quadrantes. Para encontrar a segunda solução, subtraia o ângulo de referência de para determinar a solução no terceiro quadrante.
Etapa 9.4
Resolva .
Toque para ver mais passagens...
Etapa 9.4.1
Remova os parênteses.
Etapa 9.4.2
Simplifique .
Toque para ver mais passagens...
Etapa 9.4.2.1
Multiplique por .
Etapa 9.4.2.2
Subtraia de .
Etapa 9.5
Encontre o período de .
Toque para ver mais passagens...
Etapa 9.5.1
O período da função pode ser calculado ao usar .
Etapa 9.5.2
Substitua por na fórmula do período.
Etapa 9.5.3
O valor absoluto é a distância entre um número e zero. A distância entre e é .
Etapa 9.5.4
Divida por .
Etapa 9.6
O período da função é . Portanto, os valores se repetirão a cada radianos nas duas direções.
, para qualquer número inteiro
, para qualquer número inteiro
Etapa 10
Resolva em .
Toque para ver mais passagens...
Etapa 10.1
O intervalo do cosseno é . Como não se enquadra nesse intervalo, não há solução.
Nenhuma solução
Nenhuma solução
Etapa 11
Liste todas as soluções.
, para qualquer número inteiro