Insira um problema...
Pré-cálculo Exemplos
Etapa 1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Etapa 2
Etapa 2.1
Reescreva como .
Etapa 2.2
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Etapa 3
Etapa 3.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 3.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 3.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 4
Estabeleça cada uma das soluções para resolver .
Etapa 5
Etapa 5.1
Obtenha a secante inversa dos dois lados da equação para extrair de dentro da secante.
Etapa 5.2
Simplifique o lado direito.
Etapa 5.2.1
Avalie .
Etapa 5.3
A função secante é positiva no primeiro e no quarto quadrantes. Para encontrar a segunda solução, subtraia o ângulo de referência de para determinar a solução no quarto quadrante.
Etapa 5.4
Resolva .
Etapa 5.4.1
Remova os parênteses.
Etapa 5.4.2
Simplifique .
Etapa 5.4.2.1
Multiplique por .
Etapa 5.4.2.2
Subtraia de .
Etapa 5.5
Encontre o período de .
Etapa 5.5.1
O período da função pode ser calculado ao usar .
Etapa 5.5.2
Substitua por na fórmula do período.
Etapa 5.5.3
O valor absoluto é a distância entre um número e zero. A distância entre e é .
Etapa 5.5.4
Divida por .
Etapa 5.6
O período da função é . Portanto, os valores se repetirão a cada radianos nas duas direções.
, para qualquer número inteiro
, para qualquer número inteiro
Etapa 6
Etapa 6.1
Obtenha a secante inversa dos dois lados da equação para extrair de dentro da secante.
Etapa 6.2
Simplifique o lado direito.
Etapa 6.2.1
Avalie .
Etapa 6.3
A função secante é negativa no segundo e no terceiro quadrantes. Para encontrar a segunda solução, subtraia o ângulo de referência de para determinar a solução no terceiro quadrante.
Etapa 6.4
Resolva .
Etapa 6.4.1
Remova os parênteses.
Etapa 6.4.2
Simplifique .
Etapa 6.4.2.1
Multiplique por .
Etapa 6.4.2.2
Subtraia de .
Etapa 6.5
Encontre o período de .
Etapa 6.5.1
O período da função pode ser calculado ao usar .
Etapa 6.5.2
Substitua por na fórmula do período.
Etapa 6.5.3
O valor absoluto é a distância entre um número e zero. A distância entre e é .
Etapa 6.5.4
Divida por .
Etapa 6.6
O período da função é . Portanto, os valores se repetirão a cada radianos nas duas direções.
, para qualquer número inteiro
, para qualquer número inteiro
Etapa 7
Liste todas as soluções.
, para qualquer número inteiro
Etapa 8
Etapa 8.1
Consolide e em .
, para qualquer número inteiro
Etapa 8.2
Consolide e em .
, para qualquer número inteiro
, para qualquer número inteiro