Insira um problema...
Pré-cálculo Exemplos
Etapa 1
Substitua na equação. A fórmula quadrática ficará mais fácil de usar.
Etapa 2
Etapa 2.1
Para um polinômio da forma , reescreva o termo do meio como uma soma de dois termos cujo produto é e cuja soma é .
Etapa 2.1.1
Fatore de .
Etapa 2.1.2
Reescreva como mais
Etapa 2.1.3
Aplique a propriedade distributiva.
Etapa 2.2
Fatore o máximo divisor comum de cada grupo.
Etapa 2.2.1
Agrupe os dois primeiros termos e os dois últimos termos.
Etapa 2.2.2
Fatore o máximo divisor comum (MDC) de cada grupo.
Etapa 2.3
Fatore o polinômio desmembrando o máximo divisor comum, .
Etapa 3
Se qualquer fator individual no lado esquerdo da equação for igual a , toda a expressão será igual a .
Etapa 4
Etapa 4.1
Defina como igual a .
Etapa 4.2
Resolva para .
Etapa 4.2.1
Some aos dois lados da equação.
Etapa 4.2.2
Divida cada termo em por e simplifique.
Etapa 4.2.2.1
Divida cada termo em por .
Etapa 4.2.2.2
Simplifique o lado esquerdo.
Etapa 4.2.2.2.1
Cancele o fator comum de .
Etapa 4.2.2.2.1.1
Cancele o fator comum.
Etapa 4.2.2.2.1.2
Divida por .
Etapa 5
Etapa 5.1
Defina como igual a .
Etapa 5.2
Subtraia dos dois lados da equação.
Etapa 6
A solução final são todos os valores que tornam verdadeiro.
Etapa 7
Substitua o valor real de de volta na equação resolvida.
Etapa 8
Resolva a primeira equação para .
Etapa 9
Etapa 9.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Etapa 9.2
Simplifique .
Etapa 9.2.1
Reescreva como .
Etapa 9.2.2
Qualquer raiz de é .
Etapa 9.2.3
Simplifique o denominador.
Etapa 9.2.3.1
Reescreva como .
Etapa 9.2.3.2
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Etapa 9.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 9.3.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 9.3.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 9.3.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 10
Resolva a segunda equação para .
Etapa 11
Etapa 11.1
Remova os parênteses.
Etapa 11.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Etapa 11.3
Reescreva como .
Etapa 11.4
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 11.4.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 11.4.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 11.4.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 12
A solução para é .