Insira um problema...
Pré-cálculo Exemplos
Etapa 1
Etapa 1.1
Some aos dois lados da equação.
Etapa 1.2
Some e .
Etapa 2
Etapa 2.1
Encontrar o MMC de uma lista de valores é o mesmo que encontrar o MMC dos denominadores desses valores.
Etapa 2.2
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .
Etapa 2.3
O MMC é o menor número positivo pelo qual todos os números se dividem uniformemente.
1. Liste os fatores primos de cada número.
2. Multiplique cada fator pelo maior número de vezes em que ele ocorre em cada número.
Etapa 2.4
O número não é primo porque tem apenas um fator positivo, que é ele mesmo.
Não é primo
Etapa 2.5
O MMC de é o resultado da multiplicação de todos os fatores primos pelo maior número de vezes que eles ocorrem em qualquer um dos números.
Etapa 2.6
O fator de é o próprio .
ocorre vez.
Etapa 2.7
O MMC de é o resultado da multiplicação de todos os fatores primos pelo maior número de vezes que eles ocorrem em qualquer um dos termos.
Etapa 3
Etapa 3.1
Multiplique cada termo em por .
Etapa 3.2
Simplifique o lado esquerdo.
Etapa 3.2.1
Cancele o fator comum de .
Etapa 3.2.1.1
Cancele o fator comum.
Etapa 3.2.1.2
Reescreva a expressão.
Etapa 3.3
Simplifique o lado direito.
Etapa 3.3.1
Cancele o fator comum de .
Etapa 3.3.1.1
Mova o negativo de maior ordem em para o numerador.
Etapa 3.3.1.2
Cancele o fator comum.
Etapa 3.3.1.3
Reescreva a expressão.
Etapa 4
Etapa 4.1
Reescreva a equação como .
Etapa 4.2
Mova todos os termos que não contêm para o lado direito da equação.
Etapa 4.2.1
Some aos dois lados da equação.
Etapa 4.2.2
Some e .
Etapa 4.3
Divida cada termo em por e simplifique.
Etapa 4.3.1
Divida cada termo em por .
Etapa 4.3.2
Simplifique o lado esquerdo.
Etapa 4.3.2.1
Cancele o fator comum de .
Etapa 4.3.2.1.1
Cancele o fator comum.
Etapa 4.3.2.1.2
Divida por .
Etapa 4.3.3
Simplifique o lado direito.
Etapa 4.3.3.1
Divida por .