Pré-cálculo Exemplos

Löse nach x auf logaritmo de 2x+1 = logaritmo de x-3+ logaritmo de x+5
Etapa 1
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 1.1
Simplifique .
Toque para ver mais passagens...
Etapa 1.1.1
Use a propriedade dos logaritmos do produto, .
Etapa 1.1.2
Expanda usando o método FOIL.
Toque para ver mais passagens...
Etapa 1.1.2.1
Aplique a propriedade distributiva.
Etapa 1.1.2.2
Aplique a propriedade distributiva.
Etapa 1.1.2.3
Aplique a propriedade distributiva.
Etapa 1.1.3
Simplifique e combine termos semelhantes.
Toque para ver mais passagens...
Etapa 1.1.3.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.1.3.1.1
Multiplique por .
Etapa 1.1.3.1.2
Mova para a esquerda de .
Etapa 1.1.3.1.3
Multiplique por .
Etapa 1.1.3.2
Subtraia de .
Etapa 2
Para que a equação seja igual, o argumento dos logaritmos deve ser igual nos dois lados da equação.
Etapa 3
Resolva .
Toque para ver mais passagens...
Etapa 3.1
Como está do lado direito da equação, troque os lados para que ela fique do lado esquerdo da equação.
Etapa 3.2
Mova todos os termos que contêm para o lado esquerdo da equação.
Toque para ver mais passagens...
Etapa 3.2.1
Subtraia dos dois lados da equação.
Etapa 3.2.2
Combine os termos opostos em .
Toque para ver mais passagens...
Etapa 3.2.2.1
Subtraia de .
Etapa 3.2.2.2
Some e .
Etapa 3.3
Mova todos os termos que não contêm para o lado direito da equação.
Toque para ver mais passagens...
Etapa 3.3.1
Some aos dois lados da equação.
Etapa 3.3.2
Some e .
Etapa 3.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Etapa 3.5
Simplifique .
Toque para ver mais passagens...
Etapa 3.5.1
Reescreva como .
Etapa 3.5.2
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Etapa 3.6
A solução completa é resultado das partes positiva e negativa da solução.
Toque para ver mais passagens...
Etapa 3.6.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 3.6.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 3.6.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 4
Exclua as soluções que não tornam verdadeira.