Insira um problema...
Pré-cálculo Exemplos
Etapa 1
Defina como igual a .
Etapa 2
Etapa 2.1
Fatore o lado esquerdo da equação.
Etapa 2.1.1
Reagrupe os termos.
Etapa 2.1.2
Fatore de .
Etapa 2.1.2.1
Fatore de .
Etapa 2.1.2.2
Fatore de .
Etapa 2.1.2.3
Fatore de .
Etapa 2.1.3
Reescreva como .
Etapa 2.1.4
Reescreva como .
Etapa 2.1.5
Como os dois termos são quadrados perfeitos, fatore usando a fórmula da diferença de quadrados, em que e .
Etapa 2.1.6
Fatore.
Etapa 2.1.6.1
Simplifique.
Etapa 2.1.6.1.1
Reescreva como .
Etapa 2.1.6.1.2
Fatore.
Etapa 2.1.6.1.2.1
Como os dois termos são quadrados perfeitos, fatore usando a fórmula da diferença de quadrados, em que e .
Etapa 2.1.6.1.2.2
Remova os parênteses desnecessários.
Etapa 2.1.6.2
Remova os parênteses desnecessários.
Etapa 2.1.7
Fatore de .
Etapa 2.1.7.1
Fatore de .
Etapa 2.1.7.2
Fatore de .
Etapa 2.1.7.3
Fatore de .
Etapa 2.1.7.4
Fatore de .
Etapa 2.1.7.5
Fatore de .
Etapa 2.1.8
Reescreva como .
Etapa 2.1.9
Deixe . Substitua em todas as ocorrências de .
Etapa 2.1.10
Fatore por agrupamento.
Etapa 2.1.10.1
Para um polinômio da forma , reescreva o termo do meio como uma soma de dois termos cujo produto é e cuja soma é .
Etapa 2.1.10.1.1
Fatore de .
Etapa 2.1.10.1.2
Reescreva como mais
Etapa 2.1.10.1.3
Aplique a propriedade distributiva.
Etapa 2.1.10.2
Fatore o máximo divisor comum de cada grupo.
Etapa 2.1.10.2.1
Agrupe os dois primeiros termos e os dois últimos termos.
Etapa 2.1.10.2.2
Fatore o máximo divisor comum (MDC) de cada grupo.
Etapa 2.1.10.3
Fatore o polinômio desmembrando o máximo divisor comum, .
Etapa 2.1.11
Substitua todas as ocorrências de por .
Etapa 2.1.12
Reescreva como .
Etapa 2.1.13
Fatore.
Etapa 2.1.13.1
Fatore.
Etapa 2.1.13.1.1
Como os dois termos são quadrados perfeitos, fatore usando a fórmula da diferença de quadrados, em que e .
Etapa 2.1.13.1.2
Remova os parênteses desnecessários.
Etapa 2.1.13.2
Remova os parênteses desnecessários.
Etapa 2.1.14
Fatore de .
Etapa 2.1.14.1
Fatore de .
Etapa 2.1.14.2
Fatore de .
Etapa 2.1.14.3
Fatore de .
Etapa 2.1.15
Aplique a propriedade distributiva.
Etapa 2.1.16
Multiplique por somando os expoentes.
Etapa 2.1.16.1
Multiplique por .
Etapa 2.1.16.1.1
Eleve à potência de .
Etapa 2.1.16.1.2
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 2.1.16.2
Some e .
Etapa 2.1.17
Mova para a esquerda de .
Etapa 2.1.18
Aplique a propriedade distributiva.
Etapa 2.1.19
Multiplique por .
Etapa 2.1.20
Multiplique por .
Etapa 2.1.21
Reordene os termos.
Etapa 2.1.22
Fatore.
Etapa 2.1.22.1
Fatore usando o teste das raízes racionais.
Etapa 2.1.22.1.1
Se uma função polinomial tiver coeficientes inteiros, então todo zero racional terá a forma , em que é um fator da constante e é um fator do coeficiente de maior ordem.
Etapa 2.1.22.1.2
Encontre todas as combinações de . Essas são as raízes possíveis da função polinomial.
Etapa 2.1.22.1.3
Substitua e simplifique a expressão. Nesse caso, a expressão é igual a . Portanto, é uma raiz do polinômio.
Etapa 2.1.22.1.3.1
Substitua no polinômio.
Etapa 2.1.22.1.3.2
Eleve à potência de .
Etapa 2.1.22.1.3.3
Eleve à potência de .
Etapa 2.1.22.1.3.4
Multiplique por .
Etapa 2.1.22.1.3.5
Some e .
Etapa 2.1.22.1.3.6
Multiplique por .
Etapa 2.1.22.1.3.7
Subtraia de .
Etapa 2.1.22.1.3.8
Subtraia de .
Etapa 2.1.22.1.4
Como é uma raiz conhecida, divida o polinômio por para encontrar o polinômio do quociente. Então, esse polinômio pode ser usado para encontrar as raízes restantes.
Etapa 2.1.22.1.5
Divida por .
Etapa 2.1.22.1.5.1
Estabeleça os polinômios a serem divididos. Se não houver um termo para cada expoente, insira um com valor de .
+ | + | + | - |
Etapa 2.1.22.1.5.2
Divida o termo de ordem mais alta no dividendo pelo termo de ordem mais alta no divisor .
+ | + | + | - |
Etapa 2.1.22.1.5.3
Multiplique o novo termo do quociente pelo divisor.
+ | + | + | - | ||||||||
+ | + |
Etapa 2.1.22.1.5.4
A expressão precisa ser subtraída do dividendo. Portanto, altere todos os sinais em .
+ | + | + | - | ||||||||
- | - |
Etapa 2.1.22.1.5.5
Depois de alterar os sinais, some o último dividendo do polinômio multiplicado para encontrar o novo dividendo.
+ | + | + | - | ||||||||
- | - | ||||||||||
+ |
Etapa 2.1.22.1.5.6
Tire os próximos termos do dividendo original e os coloque no dividendo atual.
+ | + | + | - | ||||||||
- | - | ||||||||||
+ | + |
Etapa 2.1.22.1.5.7
Divida o termo de ordem mais alta no dividendo pelo termo de ordem mais alta no divisor .
+ | |||||||||||
+ | + | + | - | ||||||||
- | - | ||||||||||
+ | + |
Etapa 2.1.22.1.5.8
Multiplique o novo termo do quociente pelo divisor.
+ | |||||||||||
+ | + | + | - | ||||||||
- | - | ||||||||||
+ | + | ||||||||||
+ | + |
Etapa 2.1.22.1.5.9
A expressão precisa ser subtraída do dividendo. Portanto, altere todos os sinais em .
+ | |||||||||||
+ | + | + | - | ||||||||
- | - | ||||||||||
+ | + | ||||||||||
- | - |
Etapa 2.1.22.1.5.10
Depois de alterar os sinais, some o último dividendo do polinômio multiplicado para encontrar o novo dividendo.
+ | |||||||||||
+ | + | + | - | ||||||||
- | - | ||||||||||
+ | + | ||||||||||
- | - | ||||||||||
- |
Etapa 2.1.22.1.5.11
Tire os próximos termos do dividendo original e os coloque no dividendo atual.
+ | |||||||||||
+ | + | + | - | ||||||||
- | - | ||||||||||
+ | + | ||||||||||
- | - | ||||||||||
- | - |
Etapa 2.1.22.1.5.12
Divida o termo de ordem mais alta no dividendo pelo termo de ordem mais alta no divisor .
+ | - | ||||||||||
+ | + | + | - | ||||||||
- | - | ||||||||||
+ | + | ||||||||||
- | - | ||||||||||
- | - |
Etapa 2.1.22.1.5.13
Multiplique o novo termo do quociente pelo divisor.
+ | - | ||||||||||
+ | + | + | - | ||||||||
- | - | ||||||||||
+ | + | ||||||||||
- | - | ||||||||||
- | - | ||||||||||
- | - |
Etapa 2.1.22.1.5.14
A expressão precisa ser subtraída do dividendo. Portanto, altere todos os sinais em .
+ | - | ||||||||||
+ | + | + | - | ||||||||
- | - | ||||||||||
+ | + | ||||||||||
- | - | ||||||||||
- | - | ||||||||||
+ | + |
Etapa 2.1.22.1.5.15
Depois de alterar os sinais, some o último dividendo do polinômio multiplicado para encontrar o novo dividendo.
+ | - | ||||||||||
+ | + | + | - | ||||||||
- | - | ||||||||||
+ | + | ||||||||||
- | - | ||||||||||
- | - | ||||||||||
+ | + | ||||||||||
Etapa 2.1.22.1.5.16
Já que o resto é , a resposta final é o quociente.
Etapa 2.1.22.1.6
Escreva como um conjunto de fatores.
Etapa 2.1.22.2
Remova os parênteses desnecessários.
Etapa 2.2
Se qualquer fator individual no lado esquerdo da equação for igual a , toda a expressão será igual a .
Etapa 2.3
Defina como igual a e resolva para .
Etapa 2.3.1
Defina como igual a .
Etapa 2.3.2
Subtraia dos dois lados da equação.
Etapa 2.4
Defina como igual a e resolva para .
Etapa 2.4.1
Defina como igual a .
Etapa 2.4.2
Some aos dois lados da equação.
Etapa 2.5
Defina como igual a e resolva para .
Etapa 2.5.1
Defina como igual a .
Etapa 2.5.2
Subtraia dos dois lados da equação.
Etapa 2.6
Defina como igual a e resolva para .
Etapa 2.6.1
Defina como igual a .
Etapa 2.6.2
Resolva para .
Etapa 2.6.2.1
Use a fórmula quadrática para encontrar as soluções.
Etapa 2.6.2.2
Substitua os valores , e na fórmula quadrática e resolva .
Etapa 2.6.2.3
Simplifique.
Etapa 2.6.2.3.1
Simplifique o numerador.
Etapa 2.6.2.3.1.1
Eleve à potência de .
Etapa 2.6.2.3.1.2
Multiplique .
Etapa 2.6.2.3.1.2.1
Multiplique por .
Etapa 2.6.2.3.1.2.2
Multiplique por .
Etapa 2.6.2.3.1.3
Some e .
Etapa 2.6.2.3.1.4
Reescreva como .
Etapa 2.6.2.3.1.4.1
Fatore de .
Etapa 2.6.2.3.1.4.2
Reescreva como .
Etapa 2.6.2.3.1.5
Elimine os termos abaixo do radical.
Etapa 2.6.2.3.2
Multiplique por .
Etapa 2.6.2.3.3
Simplifique .
Etapa 2.6.2.4
A resposta final é a combinação das duas soluções.
Etapa 2.7
A solução final são todos os valores que tornam verdadeiro.
Etapa 3
O resultado pode ser mostrado de várias formas.
Forma exata:
Forma decimal:
Etapa 4