Insira um problema...
Pré-cálculo Exemplos
Etapa 1
Se uma função polinomial tiver coeficientes inteiros, então todo zero racional terá a forma , em que é um fator da constante e é um fator do coeficiente de maior ordem.
Etapa 2
Encontre todas as combinações de . Essas são as raízes possíveis da função polinomial.
Etapa 3
Substitua cada raiz possível no polinômio para encontrar as raízes reais. Simplifique para verificar se o valor é , o que significa que é uma raiz.
Etapa 4
Etapa 4.1
Simplifique cada termo.
Etapa 4.1.1
Eleve à potência de .
Etapa 4.1.2
Multiplique por .
Etapa 4.1.3
Eleve à potência de .
Etapa 4.1.4
Multiplique por .
Etapa 4.1.5
Eleve à potência de .
Etapa 4.1.6
Multiplique por .
Etapa 4.1.7
Multiplique por .
Etapa 4.2
Simplifique somando e subtraindo.
Etapa 4.2.1
Some e .
Etapa 4.2.2
Subtraia de .
Etapa 4.2.3
Subtraia de .
Etapa 4.2.4
Some e .
Etapa 5
Como é uma raiz conhecida, divida o polinômio por para encontrar o polinômio do quociente. Então, esse polinômio poderá ser usado para encontrar as raízes restantes.
Etapa 6
Etapa 6.1
Coloque os números que representam o divisor e o dividendo em uma configuração semelhante à de divisão.
Etapa 6.2
O primeiro número no dividendo é colocado na primeira posição da área de resultado (abaixo da linha horizontal).
Etapa 6.3
Multiplique a entrada mais recente no resultado pelo divisor e coloque o resultado de sob o próximo termo no dividendo .
Etapa 6.4
Some o produto da multiplicação com o número do dividendo e coloque o resultado na próxima posição, na linha de resultados.
Etapa 6.5
Multiplique a entrada mais recente no resultado pelo divisor e coloque o resultado de sob o próximo termo no dividendo .
Etapa 6.6
Some o produto da multiplicação com o número do dividendo e coloque o resultado na próxima posição, na linha de resultados.
Etapa 6.7
Multiplique a entrada mais recente no resultado pelo divisor e coloque o resultado de sob o próximo termo no dividendo .
Etapa 6.8
Some o produto da multiplicação com o número do dividendo e coloque o resultado na próxima posição, na linha de resultados.
Etapa 6.9
Multiplique a entrada mais recente no resultado pelo divisor e coloque o resultado de sob o próximo termo no dividendo .
Etapa 6.10
Some o produto da multiplicação com o número do dividendo e coloque o resultado na próxima posição, na linha de resultados.
Etapa 6.11
Todos os números, exceto o último, tornam-se os coeficientes do polinômio do quociente. O último valor na linha de resultados é o resto.
Etapa 6.12
Simplifique o polinômio do quociente.
Etapa 7
Etapa 7.1
Agrupe os dois primeiros termos e os dois últimos termos.
Etapa 7.2
Fatore o máximo divisor comum (MDC) de cada grupo.
Etapa 8
Fatore o polinômio desmembrando o máximo divisor comum, .
Etapa 9
Reescreva como .
Etapa 10
Reescreva como .
Etapa 11
Etapa 11.1
Como os dois termos são quadrados perfeitos, fatore usando a fórmula da diferença de quadrados, em que e .
Etapa 11.2
Remova os parênteses desnecessários.
Etapa 12
Etapa 12.1
Reagrupe os termos.
Etapa 12.2
Fatore de .
Etapa 12.2.1
Fatore de .
Etapa 12.2.2
Fatore de .
Etapa 12.2.3
Fatore de .
Etapa 12.3
Reescreva como .
Etapa 12.4
Reescreva como .
Etapa 12.5
Fatore.
Etapa 12.5.1
Como os dois termos são quadrados perfeitos, fatore usando a fórmula da diferença de quadrados, em que e .
Etapa 12.5.2
Remova os parênteses desnecessários.
Etapa 12.6
Reescreva como .
Etapa 12.7
Deixe . Substitua em todas as ocorrências de .
Etapa 12.8
Fatore por agrupamento.
Etapa 12.8.1
Para um polinômio da forma , reescreva o termo do meio como uma soma de dois termos cujo produto é e cuja soma é .
Etapa 12.8.1.1
Fatore de .
Etapa 12.8.1.2
Reescreva como mais
Etapa 12.8.1.3
Aplique a propriedade distributiva.
Etapa 12.8.2
Fatore o máximo divisor comum de cada grupo.
Etapa 12.8.2.1
Agrupe os dois primeiros termos e os dois últimos termos.
Etapa 12.8.2.2
Fatore o máximo divisor comum (MDC) de cada grupo.
Etapa 12.8.3
Fatore o polinômio desmembrando o máximo divisor comum, .
Etapa 12.9
Substitua todas as ocorrências de por .
Etapa 12.10
Reescreva como .
Etapa 12.11
Reescreva como .
Etapa 12.12
Como os dois termos são quadrados perfeitos, fatore usando a fórmula da diferença de quadrados, em que e .
Etapa 12.13
Fatore de .
Etapa 12.13.1
Fatore de .
Etapa 12.13.2
Fatore de .
Etapa 12.14
Deixe . Substitua em todas as ocorrências de .
Etapa 12.15
Fatore usando o método AC.
Etapa 12.15.1
Considere a forma . Encontre um par de números inteiros cujo produto é e cuja soma é . Neste caso, cujo produto é e cuja soma é .
Etapa 12.15.2
Escreva a forma fatorada usando estes números inteiros.
Etapa 12.16
Fatore.
Etapa 12.16.1
Substitua todas as ocorrências de por .
Etapa 12.16.2
Remova os parênteses desnecessários.
Etapa 13
Se qualquer fator individual no lado esquerdo da equação for igual a , toda a expressão será igual a .
Etapa 14
Etapa 14.1
Defina como igual a .
Etapa 14.2
Resolva para .
Etapa 14.2.1
Subtraia dos dois lados da equação.
Etapa 14.2.2
Divida cada termo em por e simplifique.
Etapa 14.2.2.1
Divida cada termo em por .
Etapa 14.2.2.2
Simplifique o lado esquerdo.
Etapa 14.2.2.2.1
Cancele o fator comum de .
Etapa 14.2.2.2.1.1
Cancele o fator comum.
Etapa 14.2.2.2.1.2
Divida por .
Etapa 14.2.2.3
Simplifique o lado direito.
Etapa 14.2.2.3.1
Mova o número negativo para a frente da fração.
Etapa 15
Etapa 15.1
Defina como igual a .
Etapa 15.2
Resolva para .
Etapa 15.2.1
Some aos dois lados da equação.
Etapa 15.2.2
Divida cada termo em por e simplifique.
Etapa 15.2.2.1
Divida cada termo em por .
Etapa 15.2.2.2
Simplifique o lado esquerdo.
Etapa 15.2.2.2.1
Cancele o fator comum de .
Etapa 15.2.2.2.1.1
Cancele o fator comum.
Etapa 15.2.2.2.1.2
Divida por .
Etapa 16
Etapa 16.1
Defina como igual a .
Etapa 16.2
Some aos dois lados da equação.
Etapa 17
Etapa 17.1
Defina como igual a .
Etapa 17.2
Subtraia dos dois lados da equação.
Etapa 18
A solução final são todos os valores que tornam verdadeiro.
Etapa 19