Pré-cálculo Exemplos

Converta em Notação de Intervalos 4x^3+8x^2-x-2>0
Etapa 1
Converta a desigualdade em uma equação.
Etapa 2
Fatore o lado esquerdo da equação.
Toque para ver mais passagens...
Etapa 2.1
Fatore o máximo divisor comum de cada grupo.
Toque para ver mais passagens...
Etapa 2.1.1
Agrupe os dois primeiros termos e os dois últimos termos.
Etapa 2.1.2
Fatore o máximo divisor comum (MDC) de cada grupo.
Etapa 2.2
Fatore o polinômio desmembrando o máximo divisor comum, .
Etapa 2.3
Reescreva como .
Etapa 2.4
Reescreva como .
Etapa 2.5
Fatore.
Toque para ver mais passagens...
Etapa 2.5.1
Como os dois termos são quadrados perfeitos, fatore usando a fórmula da diferença de quadrados, em que e .
Etapa 2.5.2
Remova os parênteses desnecessários.
Etapa 3
Se qualquer fator individual no lado esquerdo da equação for igual a , toda a expressão será igual a .
Etapa 4
Defina como igual a e resolva para .
Toque para ver mais passagens...
Etapa 4.1
Defina como igual a .
Etapa 4.2
Subtraia dos dois lados da equação.
Etapa 5
Defina como igual a e resolva para .
Toque para ver mais passagens...
Etapa 5.1
Defina como igual a .
Etapa 5.2
Resolva para .
Toque para ver mais passagens...
Etapa 5.2.1
Subtraia dos dois lados da equação.
Etapa 5.2.2
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 5.2.2.1
Divida cada termo em por .
Etapa 5.2.2.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 5.2.2.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 5.2.2.2.1.1
Cancele o fator comum.
Etapa 5.2.2.2.1.2
Divida por .
Etapa 5.2.2.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 5.2.2.3.1
Mova o número negativo para a frente da fração.
Etapa 6
Defina como igual a e resolva para .
Toque para ver mais passagens...
Etapa 6.1
Defina como igual a .
Etapa 6.2
Resolva para .
Toque para ver mais passagens...
Etapa 6.2.1
Some aos dois lados da equação.
Etapa 6.2.2
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 6.2.2.1
Divida cada termo em por .
Etapa 6.2.2.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 6.2.2.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 6.2.2.2.1.1
Cancele o fator comum.
Etapa 6.2.2.2.1.2
Divida por .
Etapa 7
A solução final são todos os valores que tornam verdadeiro.
Etapa 8
Use cada raiz para criar intervalos de teste.
Etapa 9
Escolha um valor de teste de cada intervalo e substitua esse valor pela desigualdade original para determinar quais intervalos satisfazem a desigualdade.
Toque para ver mais passagens...
Etapa 9.1
Teste um valor no intervalo e veja se ele torna a desigualdade verdadeira.
Toque para ver mais passagens...
Etapa 9.1.1
Escolha um valor no intervalo e veja se ele torna a desigualdade original verdadeira.
Etapa 9.1.2
Substitua por na desigualdade original.
Etapa 9.1.3
O lado esquerdo não é maior do que o lado direito , o que significa que a afirmação em questão é falsa.
False
False
Etapa 9.2
Teste um valor no intervalo e veja se ele torna a desigualdade verdadeira.
Toque para ver mais passagens...
Etapa 9.2.1
Escolha um valor no intervalo e veja se ele torna a desigualdade original verdadeira.
Etapa 9.2.2
Substitua por na desigualdade original.
Etapa 9.2.3
O lado esquerdo é maior do que o lado direito , o que significa que a afirmação em questão é sempre verdadeira.
True
True
Etapa 9.3
Teste um valor no intervalo e veja se ele torna a desigualdade verdadeira.
Toque para ver mais passagens...
Etapa 9.3.1
Escolha um valor no intervalo e veja se ele torna a desigualdade original verdadeira.
Etapa 9.3.2
Substitua por na desigualdade original.
Etapa 9.3.3
O lado esquerdo não é maior do que o lado direito , o que significa que a afirmação em questão é falsa.
False
False
Etapa 9.4
Teste um valor no intervalo e veja se ele torna a desigualdade verdadeira.
Toque para ver mais passagens...
Etapa 9.4.1
Escolha um valor no intervalo e veja se ele torna a desigualdade original verdadeira.
Etapa 9.4.2
Substitua por na desigualdade original.
Etapa 9.4.3
O lado esquerdo é maior do que o lado direito , o que significa que a afirmação em questão é sempre verdadeira.
True
True
Etapa 9.5
Compare os intervalos para determinar quais satisfazem a desigualdade original.
Falso
Verdadeiro
Falso
Verdadeiro
Falso
Verdadeiro
Falso
Verdadeiro
Etapa 10
A solução consiste em todos os intervalos verdadeiros.
ou
Etapa 11
Converta a desigualdade em notação de intervalo.
Etapa 12