Pré-cálculo Exemplos

Converta em Notação de Intervalos (2x)/(16-x^2)<0
Etapa 1
Encontre todos os valores em que a expressão muda de negativo para positivo, definindo cada fator igual a . Depois, resolva.
Etapa 2
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 2.1
Divida cada termo em por .
Etapa 2.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 2.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 2.2.1.1
Cancele o fator comum.
Etapa 2.2.1.2
Divida por .
Etapa 2.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 2.3.1
Divida por .
Etapa 3
Subtraia dos dois lados da equação.
Etapa 4
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 4.1
Divida cada termo em por .
Etapa 4.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 4.2.1
Dividir dois valores negativos resulta em um valor positivo.
Etapa 4.2.2
Divida por .
Etapa 4.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 4.3.1
Divida por .
Etapa 5
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Etapa 6
Simplifique .
Toque para ver mais passagens...
Etapa 6.1
Reescreva como .
Etapa 6.2
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Etapa 7
A solução completa é resultado das partes positiva e negativa da solução.
Toque para ver mais passagens...
Etapa 7.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 7.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 7.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 8
Resolva cada fator para encontrar os valores em que a expressão de valor absoluto passa de negativa para positiva.
Etapa 9
Consolide as soluções.
Etapa 10
Encontre o domínio de .
Toque para ver mais passagens...
Etapa 10.1
Defina o denominador em como igual a para encontrar onde a expressão está indefinida.
Etapa 10.2
Resolva .
Toque para ver mais passagens...
Etapa 10.2.1
Subtraia dos dois lados da equação.
Etapa 10.2.2
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 10.2.2.1
Divida cada termo em por .
Etapa 10.2.2.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 10.2.2.2.1
Dividir dois valores negativos resulta em um valor positivo.
Etapa 10.2.2.2.2
Divida por .
Etapa 10.2.2.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 10.2.2.3.1
Divida por .
Etapa 10.2.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Etapa 10.2.4
Simplifique .
Toque para ver mais passagens...
Etapa 10.2.4.1
Reescreva como .
Etapa 10.2.4.2
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Etapa 10.2.5
A solução completa é resultado das partes positiva e negativa da solução.
Toque para ver mais passagens...
Etapa 10.2.5.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 10.2.5.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 10.2.5.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 10.3
O domínio consiste em todos os valores de que tornam a expressão definida.
Etapa 11
Use cada raiz para criar intervalos de teste.
Etapa 12
Escolha um valor de teste de cada intervalo e substitua esse valor pela desigualdade original para determinar quais intervalos satisfazem a desigualdade.
Toque para ver mais passagens...
Etapa 12.1
Teste um valor no intervalo e veja se ele torna a desigualdade verdadeira.
Toque para ver mais passagens...
Etapa 12.1.1
Escolha um valor no intervalo e veja se ele torna a desigualdade original verdadeira.
Etapa 12.1.2
Substitua por na desigualdade original.
Etapa 12.1.3
O lado esquerdo não é menor do que o lado direito , o que significa que a afirmação em questão é falsa.
False
False
Etapa 12.2
Teste um valor no intervalo e veja se ele torna a desigualdade verdadeira.
Toque para ver mais passagens...
Etapa 12.2.1
Escolha um valor no intervalo e veja se ele torna a desigualdade original verdadeira.
Etapa 12.2.2
Substitua por na desigualdade original.
Etapa 12.2.3
O lado esquerdo é menor do que o lado direito , o que significa que a afirmação em questão é sempre verdadeira.
True
True
Etapa 12.3
Teste um valor no intervalo e veja se ele torna a desigualdade verdadeira.
Toque para ver mais passagens...
Etapa 12.3.1
Escolha um valor no intervalo e veja se ele torna a desigualdade original verdadeira.
Etapa 12.3.2
Substitua por na desigualdade original.
Etapa 12.3.3
O lado esquerdo não é menor do que o lado direito , o que significa que a afirmação em questão é falsa.
False
False
Etapa 12.4
Teste um valor no intervalo e veja se ele torna a desigualdade verdadeira.
Toque para ver mais passagens...
Etapa 12.4.1
Escolha um valor no intervalo e veja se ele torna a desigualdade original verdadeira.
Etapa 12.4.2
Substitua por na desigualdade original.
Etapa 12.4.3
O lado esquerdo é menor do que o lado direito , o que significa que a afirmação em questão é sempre verdadeira.
True
True
Etapa 12.5
Compare os intervalos para determinar quais satisfazem a desigualdade original.
Falso
Verdadeiro
Falso
Verdadeiro
Falso
Verdadeiro
Falso
Verdadeiro
Etapa 13
A solução consiste em todos os intervalos verdadeiros.
ou
Etapa 14
Converta a desigualdade em notação de intervalo.
Etapa 15