Pré-cálculo Exemplos

Encontre as Raízes/Zeros Usando o Teste das Raízes Racionais x^4+x^3-42x^2
Etapa 1
Se uma função polinomial tiver coeficientes inteiros, então todo zero racional terá a forma , em que é um fator da constante e é um fator do coeficiente de maior ordem.
Etapa 2
Encontre todas as combinações de . Essas são as raízes possíveis da função polinomial.
Etapa 3
Substitua cada raiz possível no polinômio para encontrar as raízes reais. Simplifique para verificar se o valor é , o que significa que é uma raiz.
Etapa 4
Simplifique a expressão. Nesse caso, a expressão é igual a . Então, é a raiz do polinômio.
Toque para ver mais passagens...
Etapa 4.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 4.1.1
Elevar a qualquer potência positiva produz .
Etapa 4.1.2
Elevar a qualquer potência positiva produz .
Etapa 4.1.3
Elevar a qualquer potência positiva produz .
Etapa 4.1.4
Multiplique por .
Etapa 4.2
Simplifique somando os números.
Toque para ver mais passagens...
Etapa 4.2.1
Some e .
Etapa 4.2.2
Some e .
Etapa 5
Como é uma raiz conhecida, divida o polinômio por para encontrar o polinômio do quociente. Então, esse polinômio poderá ser usado para encontrar as raízes restantes.
Etapa 6
Depois, encontre as raízes do polinômio restante. A ordem do polinômio foi reduzida em .
Toque para ver mais passagens...
Etapa 6.1
Coloque os números que representam o divisor e o dividendo em uma configuração semelhante à de divisão.
  
Etapa 6.2
O primeiro número no dividendo é colocado na primeira posição da área de resultado (abaixo da linha horizontal).
  
Etapa 6.3
Multiplique a entrada mais recente no resultado pelo divisor e coloque o resultado de sob o próximo termo no dividendo .
  
Etapa 6.4
Some o produto da multiplicação com o número do dividendo e coloque o resultado na próxima posição, na linha de resultados.
  
Etapa 6.5
Multiplique a entrada mais recente no resultado pelo divisor e coloque o resultado de sob o próximo termo no dividendo .
  
Etapa 6.6
Some o produto da multiplicação com o número do dividendo e coloque o resultado na próxima posição, na linha de resultados.
  
Etapa 6.7
Multiplique a entrada mais recente no resultado pelo divisor e coloque o resultado de sob o próximo termo no dividendo .
  
Etapa 6.8
Some o produto da multiplicação com o número do dividendo e coloque o resultado na próxima posição, na linha de resultados.
  
Etapa 6.9
Multiplique a entrada mais recente no resultado pelo divisor e coloque o resultado de sob o próximo termo no dividendo .
 
Etapa 6.10
Some o produto da multiplicação com o número do dividendo e coloque o resultado na próxima posição, na linha de resultados.
 
Etapa 6.11
Todos os números, exceto o último, tornam-se os coeficientes do polinômio do quociente. O último valor na linha de resultados é o resto.
Etapa 6.12
Simplifique o polinômio do quociente.
Etapa 7
Fatore de .
Toque para ver mais passagens...
Etapa 7.1
Fatore de .
Etapa 7.2
Fatore de .
Etapa 7.3
Fatore de .
Etapa 7.4
Fatore de .
Etapa 7.5
Fatore de .
Etapa 8
Fatore.
Toque para ver mais passagens...
Etapa 8.1
Fatore usando o método AC.
Toque para ver mais passagens...
Etapa 8.1.1
Considere a forma . Encontre um par de números inteiros cujo produto é e cuja soma é . Neste caso, cujo produto é e cuja soma é .
Etapa 8.1.2
Escreva a forma fatorada usando estes números inteiros.
Etapa 8.2
Remova os parênteses desnecessários.
Etapa 9
Fatore o lado esquerdo da equação.
Toque para ver mais passagens...
Etapa 9.1
Fatore de .
Toque para ver mais passagens...
Etapa 9.1.1
Fatore de .
Etapa 9.1.2
Fatore de .
Etapa 9.1.3
Fatore de .
Etapa 9.1.4
Fatore de .
Etapa 9.1.5
Fatore de .
Etapa 9.2
Fatore.
Toque para ver mais passagens...
Etapa 9.2.1
Fatore usando o método AC.
Toque para ver mais passagens...
Etapa 9.2.1.1
Considere a forma . Encontre um par de números inteiros cujo produto é e cuja soma é . Neste caso, cujo produto é e cuja soma é .
Etapa 9.2.1.2
Escreva a forma fatorada usando estes números inteiros.
Etapa 9.2.2
Remova os parênteses desnecessários.
Etapa 10
Se qualquer fator individual no lado esquerdo da equação for igual a , toda a expressão será igual a .
Etapa 11
Defina como igual a e resolva para .
Toque para ver mais passagens...
Etapa 11.1
Defina como igual a .
Etapa 11.2
Resolva para .
Toque para ver mais passagens...
Etapa 11.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Etapa 11.2.2
Simplifique .
Toque para ver mais passagens...
Etapa 11.2.2.1
Reescreva como .
Etapa 11.2.2.2
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Etapa 11.2.2.3
Mais ou menos é .
Etapa 12
Defina como igual a e resolva para .
Toque para ver mais passagens...
Etapa 12.1
Defina como igual a .
Etapa 12.2
Some aos dois lados da equação.
Etapa 13
Defina como igual a e resolva para .
Toque para ver mais passagens...
Etapa 13.1
Defina como igual a .
Etapa 13.2
Subtraia dos dois lados da equação.
Etapa 14
A solução final são todos os valores que tornam verdadeiro.
Etapa 15