Insira um problema...
Pré-cálculo Exemplos
,
Etapa 1
Etapa 1.1
Subtraia dos dois lados da equação.
Etapa 1.2
Divida cada termo em por e simplifique.
Etapa 1.2.1
Divida cada termo em por .
Etapa 1.2.2
Simplifique o lado esquerdo.
Etapa 1.2.2.1
Dividir dois valores negativos resulta em um valor positivo.
Etapa 1.2.2.2
Divida por .
Etapa 1.2.3
Simplifique o lado direito.
Etapa 1.2.3.1
Simplifique cada termo.
Etapa 1.2.3.1.1
Divida por .
Etapa 1.2.3.1.2
Mova o número negativo do denominador de .
Etapa 1.2.3.1.3
Reescreva como .
Etapa 1.2.3.1.4
Multiplique por .
Etapa 1.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Etapa 1.4
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 1.4.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 1.4.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 1.4.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 2
Etapa 2.1
Substitua todas as ocorrências de por em cada equação.
Etapa 2.1.1
Substitua todas as ocorrências de em por .
Etapa 2.1.2
Simplifique o lado esquerdo.
Etapa 2.1.2.1
Simplifique .
Etapa 2.1.2.1.1
Simplifique cada termo.
Etapa 2.1.2.1.1.1
Reescreva como .
Etapa 2.1.2.1.1.1.1
Use para reescrever como .
Etapa 2.1.2.1.1.1.2
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 2.1.2.1.1.1.3
Combine e .
Etapa 2.1.2.1.1.1.4
Cancele o fator comum de .
Etapa 2.1.2.1.1.1.4.1
Cancele o fator comum.
Etapa 2.1.2.1.1.1.4.2
Reescreva a expressão.
Etapa 2.1.2.1.1.1.5
Simplifique.
Etapa 2.1.2.1.1.2
Aplique a propriedade distributiva.
Etapa 2.1.2.1.1.3
Multiplique por .
Etapa 2.1.2.1.1.4
Multiplique por .
Etapa 2.1.2.1.2
Some e .
Etapa 2.2
Resolva em .
Etapa 2.2.1
Mova todos os termos que não contêm para o lado direito da equação.
Etapa 2.2.1.1
Some aos dois lados da equação.
Etapa 2.2.1.2
Some e .
Etapa 2.2.2
Divida cada termo em por e simplifique.
Etapa 2.2.2.1
Divida cada termo em por .
Etapa 2.2.2.2
Simplifique o lado esquerdo.
Etapa 2.2.2.2.1
Cancele o fator comum de .
Etapa 2.2.2.2.1.1
Cancele o fator comum.
Etapa 2.2.2.2.1.2
Divida por .
Etapa 2.2.2.3
Simplifique o lado direito.
Etapa 2.2.2.3.1
Divida por .
Etapa 2.2.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Etapa 2.2.4
Qualquer raiz de é .
Etapa 2.2.5
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 2.2.5.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 2.2.5.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 2.2.5.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 2.3
Substitua todas as ocorrências de por em cada equação.
Etapa 2.3.1
Substitua todas as ocorrências de em por .
Etapa 2.3.2
Simplifique o lado direito.
Etapa 2.3.2.1
Simplifique .
Etapa 2.3.2.1.1
Um elevado a qualquer potência é um.
Etapa 2.3.2.1.2
Multiplique por .
Etapa 2.3.2.1.3
Some e .
Etapa 2.3.2.1.4
Reescreva como .
Etapa 2.4
Substitua todas as ocorrências de por em cada equação.
Etapa 2.4.1
Substitua todas as ocorrências de em por .
Etapa 2.4.2
Simplifique o lado direito.
Etapa 2.4.2.1
Simplifique .
Etapa 2.4.2.1.1
Eleve à potência de .
Etapa 2.4.2.1.2
Multiplique por .
Etapa 2.4.2.1.3
Some e .
Etapa 2.4.2.1.4
Reescreva como .
Etapa 3
Etapa 3.1
Substitua todas as ocorrências de por em cada equação.
Etapa 3.1.1
Substitua todas as ocorrências de em por .
Etapa 3.1.2
Simplifique o lado esquerdo.
Etapa 3.1.2.1
Simplifique .
Etapa 3.1.2.1.1
Simplifique cada termo.
Etapa 3.1.2.1.1.1
Aplique a regra do produto a .
Etapa 3.1.2.1.1.2
Eleve à potência de .
Etapa 3.1.2.1.1.3
Multiplique por .
Etapa 3.1.2.1.1.4
Reescreva como .
Etapa 3.1.2.1.1.4.1
Use para reescrever como .
Etapa 3.1.2.1.1.4.2
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 3.1.2.1.1.4.3
Combine e .
Etapa 3.1.2.1.1.4.4
Cancele o fator comum de .
Etapa 3.1.2.1.1.4.4.1
Cancele o fator comum.
Etapa 3.1.2.1.1.4.4.2
Reescreva a expressão.
Etapa 3.1.2.1.1.4.5
Simplifique.
Etapa 3.1.2.1.1.5
Aplique a propriedade distributiva.
Etapa 3.1.2.1.1.6
Multiplique por .
Etapa 3.1.2.1.1.7
Multiplique por .
Etapa 3.1.2.1.2
Some e .
Etapa 3.2
Resolva em .
Etapa 3.2.1
Mova todos os termos que não contêm para o lado direito da equação.
Etapa 3.2.1.1
Some aos dois lados da equação.
Etapa 3.2.1.2
Some e .
Etapa 3.2.2
Divida cada termo em por e simplifique.
Etapa 3.2.2.1
Divida cada termo em por .
Etapa 3.2.2.2
Simplifique o lado esquerdo.
Etapa 3.2.2.2.1
Cancele o fator comum de .
Etapa 3.2.2.2.1.1
Cancele o fator comum.
Etapa 3.2.2.2.1.2
Divida por .
Etapa 3.2.2.3
Simplifique o lado direito.
Etapa 3.2.2.3.1
Divida por .
Etapa 3.2.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Etapa 3.2.4
Qualquer raiz de é .
Etapa 3.2.5
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 3.2.5.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 3.2.5.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 3.2.5.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 3.3
Substitua todas as ocorrências de por em cada equação.
Etapa 3.3.1
Substitua todas as ocorrências de em por .
Etapa 3.3.2
Simplifique o lado direito.
Etapa 3.3.2.1
Simplifique .
Etapa 3.3.2.1.1
Um elevado a qualquer potência é um.
Etapa 3.3.2.1.2
Multiplique por .
Etapa 3.3.2.1.3
Some e .
Etapa 3.3.2.1.4
Reescreva como .
Etapa 3.4
Substitua todas as ocorrências de por em cada equação.
Etapa 3.4.1
Substitua todas as ocorrências de em por .
Etapa 3.4.2
Simplifique o lado direito.
Etapa 3.4.2.1
Simplifique .
Etapa 3.4.2.1.1
Eleve à potência de .
Etapa 3.4.2.1.2
Multiplique por .
Etapa 3.4.2.1.3
Some e .
Etapa 3.4.2.1.4
Reescreva como .
Etapa 4
Liste todas as soluções.
Etapa 5