Insira um problema...
Pré-cálculo Exemplos
Etapa 1
Defina como igual a .
Etapa 2
Etapa 2.1
Substitua na equação. A fórmula quadrática ficará mais fácil de usar.
Etapa 2.2
Fatore usando o método AC.
Etapa 2.2.1
Considere a forma . Encontre um par de números inteiros cujo produto é e cuja soma é . Neste caso, cujo produto é e cuja soma é .
Etapa 2.2.2
Escreva a forma fatorada usando estes números inteiros.
Etapa 2.3
Se qualquer fator individual no lado esquerdo da equação for igual a , toda a expressão será igual a .
Etapa 2.4
Defina como igual a e resolva para .
Etapa 2.4.1
Defina como igual a .
Etapa 2.4.2
Some aos dois lados da equação.
Etapa 2.5
Defina como igual a e resolva para .
Etapa 2.5.1
Defina como igual a .
Etapa 2.5.2
Subtraia dos dois lados da equação.
Etapa 2.6
A solução final são todos os valores que tornam verdadeiro.
Etapa 2.7
Substitua o valor real de de volta na equação resolvida.
Etapa 2.8
Resolva a primeira equação para .
Etapa 2.9
Resolva a equação para .
Etapa 2.9.1
Pegue a raiz especificada de ambos os lados da equação para eliminar o expoente no lado esquerdo.
Etapa 2.9.2
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 2.9.2.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 2.9.2.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 2.9.2.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 2.10
Resolva a segunda equação para .
Etapa 2.11
Resolva a equação para .
Etapa 2.11.1
Remova os parênteses.
Etapa 2.11.2
Pegue a raiz especificada de ambos os lados da equação para eliminar o expoente no lado esquerdo.
Etapa 2.11.3
Simplifique .
Etapa 2.11.3.1
Reescreva como .
Etapa 2.11.3.2
Reescreva como .
Etapa 2.11.3.3
Reescreva como .
Etapa 2.11.4
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 2.11.4.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 2.11.4.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 2.11.4.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 2.12
A solução para é .
Etapa 3