Insira um problema...
Pré-cálculo Exemplos
Etapa 1
Multiplique o numerador pelo inverso do denominador.
Etapa 2
Etapa 2.1
Para um polinômio da forma , reescreva o termo do meio como uma soma de dois termos cujo produto é e cuja soma é .
Etapa 2.1.1
Fatore de .
Etapa 2.1.2
Reescreva como mais
Etapa 2.1.3
Aplique a propriedade distributiva.
Etapa 2.1.4
Multiplique por .
Etapa 2.2
Fatore o máximo divisor comum de cada grupo.
Etapa 2.2.1
Agrupe os dois primeiros termos e os dois últimos termos.
Etapa 2.2.2
Fatore o máximo divisor comum (MDC) de cada grupo.
Etapa 2.3
Fatore o polinômio desmembrando o máximo divisor comum, .
Etapa 3
Etapa 3.1
Reescreva como .
Etapa 3.2
Como os dois termos são quadrados perfeitos, fatore usando a fórmula da diferença de quadrados, em que e .
Etapa 4
Etapa 4.1
Considere a forma . Encontre um par de números inteiros cujo produto é e cuja soma é . Neste caso, cujo produto é e cuja soma é .
Etapa 4.2
Escreva a forma fatorada usando estes números inteiros.
Etapa 5
Etapa 5.1
Para um polinômio da forma , reescreva o termo do meio como uma soma de dois termos cujo produto é e cuja soma é .
Etapa 5.1.1
Fatore de .
Etapa 5.1.2
Reescreva como mais
Etapa 5.1.3
Aplique a propriedade distributiva.
Etapa 5.1.4
Multiplique por .
Etapa 5.2
Fatore o máximo divisor comum de cada grupo.
Etapa 5.2.1
Agrupe os dois primeiros termos e os dois últimos termos.
Etapa 5.2.2
Fatore o máximo divisor comum (MDC) de cada grupo.
Etapa 5.3
Fatore o polinômio desmembrando o máximo divisor comum, .
Etapa 6
Etapa 6.1
Cancele o fator comum.
Etapa 6.2
Reescreva a expressão.
Etapa 7
Etapa 7.1
Fatore de .
Etapa 7.2
Cancele o fator comum.
Etapa 7.3
Reescreva a expressão.
Etapa 8
Multiplique por .
Etapa 9
Etapa 9.1
Cancele o fator comum.
Etapa 9.2
Reescreva a expressão.