Insira um problema...
Pré-cálculo Exemplos
Etapa 1
Etapa 1.1
Mova todos os termos que não contêm para o lado direito da equação.
Etapa 1.1.1
Some aos dois lados da equação.
Etapa 1.1.2
Some aos dois lados da equação.
Etapa 1.1.3
Subtraia dos dois lados da equação.
Etapa 1.2
Complete o quadrado de .
Etapa 1.2.1
Use a forma para encontrar os valores de , e .
Etapa 1.2.2
Considere a forma de vértice de uma parábola.
Etapa 1.2.3
Encontre o valor de usando a fórmula .
Etapa 1.2.3.1
Substitua os valores de e na fórmula .
Etapa 1.2.3.2
Simplifique o lado direito.
Etapa 1.2.3.2.1
Cancele o fator comum de e .
Etapa 1.2.3.2.1.1
Fatore de .
Etapa 1.2.3.2.1.2
Cancele os fatores comuns.
Etapa 1.2.3.2.1.2.1
Fatore de .
Etapa 1.2.3.2.1.2.2
Cancele o fator comum.
Etapa 1.2.3.2.1.2.3
Reescreva a expressão.
Etapa 1.2.3.2.2
Cancele o fator comum de .
Etapa 1.2.3.2.2.1
Cancele o fator comum.
Etapa 1.2.3.2.2.2
Reescreva a expressão.
Etapa 1.2.4
Encontre o valor de usando a fórmula .
Etapa 1.2.4.1
Substitua os valores de , e na fórmula .
Etapa 1.2.4.2
Simplifique o lado direito.
Etapa 1.2.4.2.1
Simplifique cada termo.
Etapa 1.2.4.2.1.1
Cancele o fator comum de e .
Etapa 1.2.4.2.1.1.1
Fatore de .
Etapa 1.2.4.2.1.1.2
Cancele os fatores comuns.
Etapa 1.2.4.2.1.1.2.1
Fatore de .
Etapa 1.2.4.2.1.1.2.2
Cancele o fator comum.
Etapa 1.2.4.2.1.1.2.3
Reescreva a expressão.
Etapa 1.2.4.2.1.2
Cancele o fator comum de e .
Etapa 1.2.4.2.1.2.1
Fatore de .
Etapa 1.2.4.2.1.2.2
Cancele os fatores comuns.
Etapa 1.2.4.2.1.2.2.1
Fatore de .
Etapa 1.2.4.2.1.2.2.2
Cancele o fator comum.
Etapa 1.2.4.2.1.2.2.3
Reescreva a expressão.
Etapa 1.2.4.2.1.2.2.4
Divida por .
Etapa 1.2.4.2.1.3
Multiplique por .
Etapa 1.2.4.2.2
Subtraia de .
Etapa 1.2.5
Substitua os valores de , e na forma do vértice .
Etapa 1.3
Defina como igual ao novo lado direito.
Etapa 2
Use a forma de vértice, , para determinar os valores de , e .
Etapa 3
Como o valor de é positivo, a parábola abre para a direita.
Abre para a direita
Etapa 4
Encontre o vértice .
Etapa 5
Etapa 5.1
Encontre a distância do vértice até um foco da parábola usando a seguinte fórmula.
Etapa 5.2
Substitua o valor de na fórmula.
Etapa 5.3
Multiplique por .
Etapa 6
Etapa 6.1
O foco de uma parábola pode ser encontrado ao somar com a coordenada x , se a parábola abrir para a esquerda ou a direita.
Etapa 6.2
Substitua os valores conhecidos de , e na fórmula e simplifique.
Etapa 7
Para encontrar o eixo de simetria, encontre a reta que passa pelo vértice e o foco.
Etapa 8
Etapa 8.1
A diretriz de uma parábola é a reta vertical encontrada ao subtrair da coordenada x do vértice se a parábola abrir para a esquerda ou a direita.
Etapa 8.2
Substitua os valores conhecidos de e na fórmula e simplifique.
Etapa 9
Use as propriedades da parábola para analisá-la e representá-la graficamente.
Direção: abre para a direita
Vértice:
Foco:
Eixo de simetria:
Diretriz:
Etapa 10