Insira um problema...
Pré-cálculo Exemplos
Etapa 1
Subtraia dos dois lados da equação.
Etapa 2
Pegue a raiz especificada de ambos os lados da equação para eliminar o expoente no lado esquerdo.
Etapa 3
Etapa 3.1
Reescreva como .
Etapa 3.2
Como os dois termos são quadrados perfeitos, fatore usando a fórmula da diferença de quadrados, em que e .
Etapa 4
Etapa 4.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 4.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 4.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 5
Defina o radicando em como maior do que ou igual a para encontrar onde a expressão está definida.
Etapa 6
Etapa 6.1
Se qualquer fator individual no lado esquerdo da equação for igual a , toda a expressão será igual a .
Etapa 6.2
Defina como igual a e resolva para .
Etapa 6.2.1
Defina como igual a .
Etapa 6.2.2
Subtraia dos dois lados da equação.
Etapa 6.3
Defina como igual a e resolva para .
Etapa 6.3.1
Defina como igual a .
Etapa 6.3.2
Resolva para .
Etapa 6.3.2.1
Subtraia dos dois lados da equação.
Etapa 6.3.2.2
Divida cada termo em por e simplifique.
Etapa 6.3.2.2.1
Divida cada termo em por .
Etapa 6.3.2.2.2
Simplifique o lado esquerdo.
Etapa 6.3.2.2.2.1
Dividir dois valores negativos resulta em um valor positivo.
Etapa 6.3.2.2.2.2
Divida por .
Etapa 6.3.2.2.3
Simplifique o lado direito.
Etapa 6.3.2.2.3.1
Divida por .
Etapa 6.4
A solução final são todos os valores que tornam verdadeiro.
Etapa 6.5
Use cada raiz para criar intervalos de teste.
Etapa 6.6
Escolha um valor de teste de cada intervalo e substitua esse valor pela desigualdade original para determinar quais intervalos satisfazem a desigualdade.
Etapa 6.6.1
Teste um valor no intervalo e veja se ele torna a desigualdade verdadeira.
Etapa 6.6.1.1
Escolha um valor no intervalo e veja se ele torna a desigualdade original verdadeira.
Etapa 6.6.1.2
Substitua por na desigualdade original.
Etapa 6.6.1.3
O lado esquerdo é menor do que o lado direito , o que significa que a afirmação em questão é falsa.
Falso
Falso
Etapa 6.6.2
Teste um valor no intervalo e veja se ele torna a desigualdade verdadeira.
Etapa 6.6.2.1
Escolha um valor no intervalo e veja se ele torna a desigualdade original verdadeira.
Etapa 6.6.2.2
Substitua por na desigualdade original.
Etapa 6.6.2.3
O lado esquerdo é maior do que o lado direito , o que significa que a afirmação em questão é sempre verdadeira.
Verdadeiro
Verdadeiro
Etapa 6.6.3
Teste um valor no intervalo e veja se ele torna a desigualdade verdadeira.
Etapa 6.6.3.1
Escolha um valor no intervalo e veja se ele torna a desigualdade original verdadeira.
Etapa 6.6.3.2
Substitua por na desigualdade original.
Etapa 6.6.3.3
O lado esquerdo é menor do que o lado direito , o que significa que a afirmação em questão é falsa.
Falso
Falso
Etapa 6.6.4
Compare os intervalos para determinar quais satisfazem a desigualdade original.
Falso
Verdadeiro
Falso
Falso
Verdadeiro
Falso
Etapa 6.7
A solução consiste em todos os intervalos verdadeiros.
Etapa 7
O domínio consiste em todos os valores de que tornam a expressão definida.
Notação de intervalo:
Notação de construtor de conjuntos:
Etapa 8
O intervalo é o conjunto de todos os valores válidos. Use o gráfico para encontrar o intervalo.
Notação de intervalo:
Notação de construtor de conjuntos:
Etapa 9
Determine o domínio e o intervalo.
Domínio:
Intervalo:
Etapa 10