Insira um problema...
Pré-cálculo Exemplos
Etapa 1
Etapa 1.1
Combine e .
Etapa 1.2
Complete o quadrado de .
Etapa 1.2.1
Use a forma para encontrar os valores de , e .
Etapa 1.2.2
Considere a forma de vértice de uma parábola.
Etapa 1.2.3
Encontre o valor de usando a fórmula .
Etapa 1.2.3.1
Substitua os valores de e na fórmula .
Etapa 1.2.3.2
Simplifique o lado direito.
Etapa 1.2.3.2.1
Cancele o fator comum de e .
Etapa 1.2.3.2.1.1
Fatore de .
Etapa 1.2.3.2.1.2
Cancele os fatores comuns.
Etapa 1.2.3.2.1.2.1
Cancele o fator comum.
Etapa 1.2.3.2.1.2.2
Reescreva a expressão.
Etapa 1.2.3.2.2
Multiplique o numerador pelo inverso do denominador.
Etapa 1.2.3.2.3
Multiplique .
Etapa 1.2.3.2.3.1
Multiplique por .
Etapa 1.2.3.2.3.2
Multiplique por .
Etapa 1.2.4
Encontre o valor de usando a fórmula .
Etapa 1.2.4.1
Substitua os valores de , e na fórmula .
Etapa 1.2.4.2
Simplifique o lado direito.
Etapa 1.2.4.2.1
Simplifique cada termo.
Etapa 1.2.4.2.1.1
Elevar a qualquer potência positiva produz .
Etapa 1.2.4.2.1.2
Simplifique o denominador.
Etapa 1.2.4.2.1.2.1
Multiplique por .
Etapa 1.2.4.2.1.2.2
Combine e .
Etapa 1.2.4.2.1.3
Reduza a expressão cancelando os fatores comuns.
Etapa 1.2.4.2.1.3.1
Cancele o fator comum de e .
Etapa 1.2.4.2.1.3.1.1
Fatore de .
Etapa 1.2.4.2.1.3.1.2
Cancele os fatores comuns.
Etapa 1.2.4.2.1.3.1.2.1
Fatore de .
Etapa 1.2.4.2.1.3.1.2.2
Cancele o fator comum.
Etapa 1.2.4.2.1.3.1.2.3
Reescreva a expressão.
Etapa 1.2.4.2.1.3.2
Mova o número negativo para a frente da fração.
Etapa 1.2.4.2.1.4
Multiplique o numerador pelo inverso do denominador.
Etapa 1.2.4.2.1.5
Multiplique .
Etapa 1.2.4.2.1.5.1
Multiplique por .
Etapa 1.2.4.2.1.5.2
Multiplique por .
Etapa 1.2.4.2.1.5.3
Multiplique por .
Etapa 1.2.4.2.2
Some e .
Etapa 1.2.5
Substitua os valores de , e na forma do vértice .
Etapa 1.3
Defina como igual ao novo lado direito.
Etapa 2
Use a forma de vértice, , para determinar os valores de , e .
Etapa 3
Como o valor de é negativo, a parábola abre para a esquerda.
Abre para a esquerda
Etapa 4
Encontre o vértice .
Etapa 5
Etapa 5.1
Encontre a distância do vértice até um foco da parábola usando a seguinte fórmula.
Etapa 5.2
Substitua o valor de na fórmula.
Etapa 5.3
Simplifique.
Etapa 5.3.1
Cancele o fator comum de e .
Etapa 5.3.1.1
Reescreva como .
Etapa 5.3.1.2
Mova o número negativo para a frente da fração.
Etapa 5.3.2
Combine e .
Etapa 5.3.3
Cancele o fator comum de e .
Etapa 5.3.3.1
Fatore de .
Etapa 5.3.3.2
Cancele os fatores comuns.
Etapa 5.3.3.2.1
Fatore de .
Etapa 5.3.3.2.2
Cancele o fator comum.
Etapa 5.3.3.2.3
Reescreva a expressão.
Etapa 5.3.4
Multiplique o numerador pelo inverso do denominador.
Etapa 5.3.5
Multiplique .
Etapa 5.3.5.1
Multiplique por .
Etapa 5.3.5.2
Multiplique por .
Etapa 6
Etapa 6.1
O foco de uma parábola pode ser encontrado ao somar com a coordenada x , se a parábola abrir para a esquerda ou a direita.
Etapa 6.2
Substitua os valores conhecidos de , e na fórmula e simplifique.
Etapa 7
Para encontrar o eixo de simetria, encontre a reta que passa pelo vértice e o foco.
Etapa 8
Etapa 8.1
A diretriz de uma parábola é a reta vertical encontrada ao subtrair da coordenada x do vértice se a parábola abrir para a esquerda ou a direita.
Etapa 8.2
Substitua os valores conhecidos de e na fórmula e simplifique.
Etapa 9
Use as propriedades da parábola para analisá-la e representá-la graficamente.
Direção: abre para a esquerda
Vértice:
Foco:
Eixo de simetria:
Diretriz:
Etapa 10