Insira um problema...
Pré-cálculo Exemplos
Etapa 1
Escreva como uma equação.
Etapa 2
Alterne as variáveis.
Etapa 3
Etapa 3.1
Reescreva a equação como .
Etapa 3.2
Multiplique os dois lados por .
Etapa 3.3
Simplifique.
Etapa 3.3.1
Simplifique o lado esquerdo.
Etapa 3.3.1.1
Cancele o fator comum de .
Etapa 3.3.1.1.1
Cancele o fator comum.
Etapa 3.3.1.1.2
Reescreva a expressão.
Etapa 3.3.2
Simplifique o lado direito.
Etapa 3.3.2.1
Simplifique .
Etapa 3.3.2.1.1
Aplique a propriedade distributiva.
Etapa 3.3.2.1.2
Simplifique a expressão.
Etapa 3.3.2.1.2.1
Multiplique por .
Etapa 3.3.2.1.2.2
Reordene e .
Etapa 3.4
Resolva .
Etapa 3.4.1
Reordene os fatores em .
Etapa 3.4.2
Subtraia dos dois lados da equação.
Etapa 3.4.3
Fatore de .
Etapa 3.4.3.1
Multiplique por .
Etapa 3.4.3.2
Fatore de .
Etapa 3.4.3.3
Fatore de .
Etapa 3.4.4
Divida cada termo em por e simplifique.
Etapa 3.4.4.1
Divida cada termo em por .
Etapa 3.4.4.2
Simplifique o lado esquerdo.
Etapa 3.4.4.2.1
Cancele o fator comum de .
Etapa 3.4.4.2.1.1
Cancele o fator comum.
Etapa 3.4.4.2.1.2
Divida por .
Etapa 3.4.5
Obtenha o logaritmo natural dos dois lados da equação para remover a variável do expoente.
Etapa 3.4.6
Expanda movendo para fora do logaritmo.
Etapa 3.4.7
Divida cada termo em por e simplifique.
Etapa 3.4.7.1
Divida cada termo em por .
Etapa 3.4.7.2
Simplifique o lado esquerdo.
Etapa 3.4.7.2.1
Cancele o fator comum de .
Etapa 3.4.7.2.1.1
Cancele o fator comum.
Etapa 3.4.7.2.1.2
Divida por .
Etapa 4
Replace with to show the final answer.
Etapa 5
Etapa 5.1
Para verificar o inverso, veja se e .
Etapa 5.2
Avalie .
Etapa 5.2.1
Estabeleça a função do resultado composto.
Etapa 5.2.2
Avalie substituindo o valor de em .
Etapa 5.2.3
Simplifique o denominador.
Etapa 5.2.3.1
Escreva como uma fração com um denominador comum.
Etapa 5.2.3.2
Combine os numeradores em relação ao denominador comum.
Etapa 5.2.3.3
Reescreva em uma forma fatorada.
Etapa 5.2.3.3.1
Subtraia de .
Etapa 5.2.3.3.2
Some e .
Etapa 5.2.4
Simplifique o numerador.
Etapa 5.2.4.1
Multiplique o numerador pelo inverso do denominador.
Etapa 5.2.4.2
Cancele o fator comum de .
Etapa 5.2.4.2.1
Cancele o fator comum.
Etapa 5.2.4.2.2
Reescreva a expressão.
Etapa 5.2.5
Expanda movendo para fora do logaritmo.
Etapa 5.2.6
Cancele o fator comum de .
Etapa 5.2.6.1
Cancele o fator comum.
Etapa 5.2.6.2
Divida por .
Etapa 5.3
Avalie .
Etapa 5.3.1
Estabeleça a função do resultado composto.
Etapa 5.3.2
Avalie substituindo o valor de em .
Etapa 5.3.3
Simplifique o numerador.
Etapa 5.3.3.1
Use a regra da mudança de base .
Etapa 5.3.3.2
Potenciação e logaritmo são funções inversas.
Etapa 5.3.4
Simplifique o denominador.
Etapa 5.3.4.1
Use a regra da mudança de base .
Etapa 5.3.4.2
Potenciação e logaritmo são funções inversas.
Etapa 5.3.4.3
Escreva como uma fração com um denominador comum.
Etapa 5.3.4.4
Combine os numeradores em relação ao denominador comum.
Etapa 5.3.4.5
Reescreva em uma forma fatorada.
Etapa 5.3.4.5.1
Some e .
Etapa 5.3.4.5.2
Some e .
Etapa 5.3.5
Multiplique o numerador pelo inverso do denominador.
Etapa 5.3.6
Cancele o fator comum de .
Etapa 5.3.6.1
Cancele o fator comum.
Etapa 5.3.6.2
Reescreva a expressão.
Etapa 5.4
Como e , então, é o inverso de .