Pré-cálculo Exemplos

Determina o domínio f(x) = square root of 2x^3-5x^2-3x
Etapa 1
Defina o radicando em como maior do que ou igual a para encontrar onde a expressão está definida.
Etapa 2
Resolva .
Toque para ver mais passagens...
Etapa 2.1
Converta a desigualdade em uma equação.
Etapa 2.2
Fatore o lado esquerdo da equação.
Toque para ver mais passagens...
Etapa 2.2.1
Fatore de .
Toque para ver mais passagens...
Etapa 2.2.1.1
Fatore de .
Etapa 2.2.1.2
Fatore de .
Etapa 2.2.1.3
Fatore de .
Etapa 2.2.1.4
Fatore de .
Etapa 2.2.1.5
Fatore de .
Etapa 2.2.2
Fatore.
Toque para ver mais passagens...
Etapa 2.2.2.1
Fatore por agrupamento.
Toque para ver mais passagens...
Etapa 2.2.2.1.1
Para um polinômio da forma , reescreva o termo do meio como uma soma de dois termos cujo produto é e cuja soma é .
Toque para ver mais passagens...
Etapa 2.2.2.1.1.1
Fatore de .
Etapa 2.2.2.1.1.2
Reescreva como mais
Etapa 2.2.2.1.1.3
Aplique a propriedade distributiva.
Etapa 2.2.2.1.1.4
Multiplique por .
Etapa 2.2.2.1.2
Fatore o máximo divisor comum de cada grupo.
Toque para ver mais passagens...
Etapa 2.2.2.1.2.1
Agrupe os dois primeiros termos e os dois últimos termos.
Etapa 2.2.2.1.2.2
Fatore o máximo divisor comum (MDC) de cada grupo.
Etapa 2.2.2.1.3
Fatore o polinômio desmembrando o máximo divisor comum, .
Etapa 2.2.2.2
Remova os parênteses desnecessários.
Etapa 2.3
Se qualquer fator individual no lado esquerdo da equação for igual a , toda a expressão será igual a .
Etapa 2.4
Defina como igual a .
Etapa 2.5
Defina como igual a e resolva para .
Toque para ver mais passagens...
Etapa 2.5.1
Defina como igual a .
Etapa 2.5.2
Resolva para .
Toque para ver mais passagens...
Etapa 2.5.2.1
Subtraia dos dois lados da equação.
Etapa 2.5.2.2
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 2.5.2.2.1
Divida cada termo em por .
Etapa 2.5.2.2.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 2.5.2.2.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 2.5.2.2.2.1.1
Cancele o fator comum.
Etapa 2.5.2.2.2.1.2
Divida por .
Etapa 2.5.2.2.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 2.5.2.2.3.1
Mova o número negativo para a frente da fração.
Etapa 2.6
Defina como igual a e resolva para .
Toque para ver mais passagens...
Etapa 2.6.1
Defina como igual a .
Etapa 2.6.2
Some aos dois lados da equação.
Etapa 2.7
A solução final são todos os valores que tornam verdadeiro.
Etapa 2.8
Use cada raiz para criar intervalos de teste.
Etapa 2.9
Escolha um valor de teste de cada intervalo e substitua esse valor pela desigualdade original para determinar quais intervalos satisfazem a desigualdade.
Toque para ver mais passagens...
Etapa 2.9.1
Teste um valor no intervalo e veja se ele torna a desigualdade verdadeira.
Toque para ver mais passagens...
Etapa 2.9.1.1
Escolha um valor no intervalo e veja se ele torna a desigualdade original verdadeira.
Etapa 2.9.1.2
Substitua por na desigualdade original.
Etapa 2.9.1.3
O lado esquerdo é menor do que o lado direito , o que significa que a afirmação em questão é falsa.
Falso
Falso
Etapa 2.9.2
Teste um valor no intervalo e veja se ele torna a desigualdade verdadeira.
Toque para ver mais passagens...
Etapa 2.9.2.1
Escolha um valor no intervalo e veja se ele torna a desigualdade original verdadeira.
Etapa 2.9.2.2
Substitua por na desigualdade original.
Etapa 2.9.2.3
O lado esquerdo é maior do que o lado direito , o que significa que a afirmação em questão é sempre verdadeira.
Verdadeiro
Verdadeiro
Etapa 2.9.3
Teste um valor no intervalo e veja se ele torna a desigualdade verdadeira.
Toque para ver mais passagens...
Etapa 2.9.3.1
Escolha um valor no intervalo e veja se ele torna a desigualdade original verdadeira.
Etapa 2.9.3.2
Substitua por na desigualdade original.
Etapa 2.9.3.3
O lado esquerdo é menor do que o lado direito , o que significa que a afirmação em questão é falsa.
Falso
Falso
Etapa 2.9.4
Teste um valor no intervalo e veja se ele torna a desigualdade verdadeira.
Toque para ver mais passagens...
Etapa 2.9.4.1
Escolha um valor no intervalo e veja se ele torna a desigualdade original verdadeira.
Etapa 2.9.4.2
Substitua por na desigualdade original.
Etapa 2.9.4.3
O lado esquerdo é maior do que o lado direito , o que significa que a afirmação em questão é sempre verdadeira.
Verdadeiro
Verdadeiro
Etapa 2.9.5
Compare os intervalos para determinar quais satisfazem a desigualdade original.
Falso
Verdadeiro
Falso
Verdadeiro
Falso
Verdadeiro
Falso
Verdadeiro
Etapa 2.10
A solução consiste em todos os intervalos verdadeiros.
ou
ou
Etapa 3
O domínio consiste em todos os valores de que tornam a expressão definida.
Notação de intervalo:
Notação de construtor de conjuntos:
Etapa 4