Pré-cálculo Exemplos

Determina as assíntotas f(x)=(10x^3-15x^2+x-1)/(5x^2-2)
Etapa 1
Encontre onde a expressão é indefinida.
Etapa 2
como a partir da esquerda e como a partir da direita, então, (EQUATION6 ) é uma assíntota vertical.
Etapa 3
como a partir da esquerda e como a partir da direita, então, (EQUATION6 ) é uma assíntota vertical.
Etapa 4
Liste todas as assíntotas verticais:
Etapa 5
Considere a função racional , em que é o grau do numerador e é o grau do denominador.
1. Se , então o eixo x, , será a assíntota horizontal.
2. Se , então a assíntota horizontal será a linha .
3. Se , então não haverá assíntota horizontal (haverá uma assíntota oblíqua).
Etapa 6
Encontre e .
Etapa 7
Como , não há assíntota horizontal.
Nenhuma assíntota horizontal
Etapa 8
Encontre a assíntota oblíqua usando a divisão polinomial.
Toque para ver mais passagens...
Etapa 8.1
Estabeleça os polinômios a serem divididos. Se não houver um termo para cada expoente, insira um com valor de .
+--+-
Etapa 8.2
Divida o termo de ordem mais alta no dividendo pelo termo de ordem mais alta no divisor .
+--+-
Etapa 8.3
Multiplique o novo termo do quociente pelo divisor.
+--+-
++-
Etapa 8.4
A expressão precisa ser subtraída do dividendo. Portanto, altere todos os sinais em .
+--+-
--+
Etapa 8.5
Depois de alterar os sinais, some o último dividendo do polinômio multiplicado para encontrar o novo dividendo.
+--+-
--+
-+
Etapa 8.6
Tire os próximos termos do dividendo original e os coloque no dividendo atual.
+--+-
--+
-+-
Etapa 8.7
Divida o termo de ordem mais alta no dividendo pelo termo de ordem mais alta no divisor .
-
+--+-
--+
-+-
Etapa 8.8
Multiplique o novo termo do quociente pelo divisor.
-
+--+-
--+
-+-
-++
Etapa 8.9
A expressão precisa ser subtraída do dividendo. Portanto, altere todos os sinais em .
-
+--+-
--+
-+-
+--
Etapa 8.10
Depois de alterar os sinais, some o último dividendo do polinômio multiplicado para encontrar o novo dividendo.
-
+--+-
--+
-+-
+--
+-
Etapa 8.11
A resposta final é o quociente mais o resto sobre o divisor.
Etapa 8.12
A assíntota oblíqua é a parte polinomial do resultado da divisão longa.
Etapa 9
Este é o conjunto de todas as assíntotas.
Assíntotas verticais:
Nenhuma assíntota horizontal
Assíntotas oblíquas:
Etapa 10