Insira um problema...
Pré-cálculo Exemplos
Etapa 1
Defina o radicando em como maior do que ou igual a para encontrar onde a expressão está definida.
Etapa 2
Etapa 2.1
Mova todos os termos que não contêm para o lado direito da desigualdade.
Etapa 2.1.1
Subtraia dos dois lados da desigualdade.
Etapa 2.1.2
Some aos dois lados da desigualdade.
Etapa 2.2
Take the specified root of both sides of the inequality to eliminate the exponent on the left side.
Etapa 2.3
Simplifique a equação.
Etapa 2.3.1
Simplifique o lado esquerdo.
Etapa 2.3.1.1
Elimine os termos abaixo do radical.
Etapa 2.3.2
Simplifique o lado direito.
Etapa 2.3.2.1
Simplifique .
Etapa 2.3.2.1.1
Simplifique a expressão.
Etapa 2.3.2.1.1.1
Reescreva como .
Etapa 2.3.2.1.1.2
Reordene e .
Etapa 2.3.2.1.2
Como os dois termos são quadrados perfeitos, fatore usando a fórmula da diferença de quadrados, em que e .
Etapa 2.4
Escreva em partes.
Etapa 2.4.1
Para encontrar o intervalo da primeira parte, identifique onde o interior do valor absoluto é não negativo.
Etapa 2.4.2
Na parte em que é não negativo, remova o valor absoluto.
Etapa 2.4.3
Encontre o domínio de e a intersecção com .
Etapa 2.4.3.1
Encontre o domínio de .
Etapa 2.4.3.1.1
Defina o radicando em como maior do que ou igual a para encontrar onde a expressão está definida.
Etapa 2.4.3.1.2
Resolva .
Etapa 2.4.3.1.2.1
Simplifique .
Etapa 2.4.3.1.2.1.1
Expanda usando o método FOIL.
Etapa 2.4.3.1.2.1.1.1
Aplique a propriedade distributiva.
Etapa 2.4.3.1.2.1.1.2
Aplique a propriedade distributiva.
Etapa 2.4.3.1.2.1.1.3
Aplique a propriedade distributiva.
Etapa 2.4.3.1.2.1.2
Simplifique e combine termos semelhantes.
Etapa 2.4.3.1.2.1.2.1
Simplifique cada termo.
Etapa 2.4.3.1.2.1.2.1.1
Multiplique por .
Etapa 2.4.3.1.2.1.2.1.2
Multiplique por .
Etapa 2.4.3.1.2.1.2.1.3
Mova para a esquerda de .
Etapa 2.4.3.1.2.1.2.1.4
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 2.4.3.1.2.1.2.1.5
Multiplique por somando os expoentes.
Etapa 2.4.3.1.2.1.2.1.5.1
Mova .
Etapa 2.4.3.1.2.1.2.1.5.2
Multiplique por .
Etapa 2.4.3.1.2.1.2.2
Some e .
Etapa 2.4.3.1.2.1.2.3
Some e .
Etapa 2.4.3.1.2.2
Subtraia dos dois lados da desigualdade.
Etapa 2.4.3.1.2.3
Divida cada termo em por e simplifique.
Etapa 2.4.3.1.2.3.1
Divida cada termo em por . Ao multiplicar ou dividir os dois lados de uma desigualdade por um valor negativo, inverta a direção do sinal de desigualdade.
Etapa 2.4.3.1.2.3.2
Simplifique o lado esquerdo.
Etapa 2.4.3.1.2.3.2.1
Dividir dois valores negativos resulta em um valor positivo.
Etapa 2.4.3.1.2.3.2.2
Divida por .
Etapa 2.4.3.1.2.3.3
Simplifique o lado direito.
Etapa 2.4.3.1.2.3.3.1
Divida por .
Etapa 2.4.3.1.2.4
Take the specified root of both sides of the inequality to eliminate the exponent on the left side.
Etapa 2.4.3.1.2.5
Simplifique a equação.
Etapa 2.4.3.1.2.5.1
Simplifique o lado esquerdo.
Etapa 2.4.3.1.2.5.1.1
Elimine os termos abaixo do radical.
Etapa 2.4.3.1.2.5.2
Simplifique o lado direito.
Etapa 2.4.3.1.2.5.2.1
Simplifique .
Etapa 2.4.3.1.2.5.2.1.1
Reescreva como .
Etapa 2.4.3.1.2.5.2.1.2
Elimine os termos abaixo do radical.
Etapa 2.4.3.1.2.5.2.1.3
O valor absoluto é a distância entre um número e zero. A distância entre e é .
Etapa 2.4.3.1.2.6
Escreva em partes.
Etapa 2.4.3.1.2.6.1
Para encontrar o intervalo da primeira parte, identifique onde o interior do valor absoluto é não negativo.
Etapa 2.4.3.1.2.6.2
Na parte em que é não negativo, remova o valor absoluto.
Etapa 2.4.3.1.2.6.3
Para encontrar o intervalo da segunda parte, identifique onde o interior do valor absoluto é negativo.
Etapa 2.4.3.1.2.6.4
Na parte em que é negativo, remova o valor absoluto e multiplique por .
Etapa 2.4.3.1.2.6.5
Escreva em partes.
Etapa 2.4.3.1.2.7
Encontre a intersecção de e .
Etapa 2.4.3.1.2.8
Resolva quando .
Etapa 2.4.3.1.2.8.1
Divida cada termo em por e simplifique.
Etapa 2.4.3.1.2.8.1.1
Divida cada termo em por . Ao multiplicar ou dividir os dois lados de uma desigualdade por um valor negativo, inverta a direção do sinal de desigualdade.
Etapa 2.4.3.1.2.8.1.2
Simplifique o lado esquerdo.
Etapa 2.4.3.1.2.8.1.2.1
Dividir dois valores negativos resulta em um valor positivo.
Etapa 2.4.3.1.2.8.1.2.2
Divida por .
Etapa 2.4.3.1.2.8.1.3
Simplifique o lado direito.
Etapa 2.4.3.1.2.8.1.3.1
Divida por .
Etapa 2.4.3.1.2.8.2
Encontre a intersecção de e .
Etapa 2.4.3.1.2.9
Encontre a união das soluções.
Etapa 2.4.3.1.3
O domínio consiste em todos os valores de que tornam a expressão definida.
Etapa 2.4.3.2
Encontre a intersecção de e .
Etapa 2.4.4
Para encontrar o intervalo da segunda parte, identifique onde o interior do valor absoluto é negativo.
Etapa 2.4.5
Na parte em que é negativo, remova o valor absoluto e multiplique por .
Etapa 2.4.6
Encontre o domínio de e a intersecção com .
Etapa 2.4.6.1
Encontre o domínio de .
Etapa 2.4.6.1.1
Defina o radicando em como maior do que ou igual a para encontrar onde a expressão está definida.
Etapa 2.4.6.1.2
Resolva .
Etapa 2.4.6.1.2.1
Simplifique .
Etapa 2.4.6.1.2.1.1
Expanda usando o método FOIL.
Etapa 2.4.6.1.2.1.1.1
Aplique a propriedade distributiva.
Etapa 2.4.6.1.2.1.1.2
Aplique a propriedade distributiva.
Etapa 2.4.6.1.2.1.1.3
Aplique a propriedade distributiva.
Etapa 2.4.6.1.2.1.2
Simplifique e combine termos semelhantes.
Etapa 2.4.6.1.2.1.2.1
Simplifique cada termo.
Etapa 2.4.6.1.2.1.2.1.1
Multiplique por .
Etapa 2.4.6.1.2.1.2.1.2
Multiplique por .
Etapa 2.4.6.1.2.1.2.1.3
Mova para a esquerda de .
Etapa 2.4.6.1.2.1.2.1.4
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 2.4.6.1.2.1.2.1.5
Multiplique por somando os expoentes.
Etapa 2.4.6.1.2.1.2.1.5.1
Mova .
Etapa 2.4.6.1.2.1.2.1.5.2
Multiplique por .
Etapa 2.4.6.1.2.1.2.2
Some e .
Etapa 2.4.6.1.2.1.2.3
Some e .
Etapa 2.4.6.1.2.2
Subtraia dos dois lados da desigualdade.
Etapa 2.4.6.1.2.3
Divida cada termo em por e simplifique.
Etapa 2.4.6.1.2.3.1
Divida cada termo em por . Ao multiplicar ou dividir os dois lados de uma desigualdade por um valor negativo, inverta a direção do sinal de desigualdade.
Etapa 2.4.6.1.2.3.2
Simplifique o lado esquerdo.
Etapa 2.4.6.1.2.3.2.1
Dividir dois valores negativos resulta em um valor positivo.
Etapa 2.4.6.1.2.3.2.2
Divida por .
Etapa 2.4.6.1.2.3.3
Simplifique o lado direito.
Etapa 2.4.6.1.2.3.3.1
Divida por .
Etapa 2.4.6.1.2.4
Take the specified root of both sides of the inequality to eliminate the exponent on the left side.
Etapa 2.4.6.1.2.5
Simplifique a equação.
Etapa 2.4.6.1.2.5.1
Simplifique o lado esquerdo.
Etapa 2.4.6.1.2.5.1.1
Elimine os termos abaixo do radical.
Etapa 2.4.6.1.2.5.2
Simplifique o lado direito.
Etapa 2.4.6.1.2.5.2.1
Simplifique .
Etapa 2.4.6.1.2.5.2.1.1
Reescreva como .
Etapa 2.4.6.1.2.5.2.1.2
Elimine os termos abaixo do radical.
Etapa 2.4.6.1.2.5.2.1.3
O valor absoluto é a distância entre um número e zero. A distância entre e é .
Etapa 2.4.6.1.2.6
Escreva em partes.
Etapa 2.4.6.1.2.6.1
Para encontrar o intervalo da primeira parte, identifique onde o interior do valor absoluto é não negativo.
Etapa 2.4.6.1.2.6.2
Na parte em que é não negativo, remova o valor absoluto.
Etapa 2.4.6.1.2.6.3
Para encontrar o intervalo da segunda parte, identifique onde o interior do valor absoluto é negativo.
Etapa 2.4.6.1.2.6.4
Na parte em que é negativo, remova o valor absoluto e multiplique por .
Etapa 2.4.6.1.2.6.5
Escreva em partes.
Etapa 2.4.6.1.2.7
Encontre a intersecção de e .
Etapa 2.4.6.1.2.8
Resolva quando .
Etapa 2.4.6.1.2.8.1
Divida cada termo em por e simplifique.
Etapa 2.4.6.1.2.8.1.1
Divida cada termo em por . Ao multiplicar ou dividir os dois lados de uma desigualdade por um valor negativo, inverta a direção do sinal de desigualdade.
Etapa 2.4.6.1.2.8.1.2
Simplifique o lado esquerdo.
Etapa 2.4.6.1.2.8.1.2.1
Dividir dois valores negativos resulta em um valor positivo.
Etapa 2.4.6.1.2.8.1.2.2
Divida por .
Etapa 2.4.6.1.2.8.1.3
Simplifique o lado direito.
Etapa 2.4.6.1.2.8.1.3.1
Divida por .
Etapa 2.4.6.1.2.8.2
Encontre a intersecção de e .
Etapa 2.4.6.1.2.9
Encontre a união das soluções.
Etapa 2.4.6.1.3
O domínio consiste em todos os valores de que tornam a expressão definida.
Etapa 2.4.6.2
Encontre a intersecção de e .
Etapa 2.4.7
Escreva em partes.
Etapa 2.5
Resolva quando .
Etapa 2.5.1
Resolva para .
Etapa 2.5.1.1
Reescreva de forma que esteja do lado esquerdo da desigualdade.
Etapa 2.5.1.2
Para remover o radical no lado esquerdo da desigualdade, eleve ao quadrado os dois lados da desigualdade.
Etapa 2.5.1.3
Simplifique cada lado da desigualdade.
Etapa 2.5.1.3.1
Use para reescrever como .
Etapa 2.5.1.3.2
Simplifique o lado esquerdo.
Etapa 2.5.1.3.2.1
Simplifique .
Etapa 2.5.1.3.2.1.1
Multiplique os expoentes em .
Etapa 2.5.1.3.2.1.1.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 2.5.1.3.2.1.1.2
Cancele o fator comum de .
Etapa 2.5.1.3.2.1.1.2.1
Cancele o fator comum.
Etapa 2.5.1.3.2.1.1.2.2
Reescreva a expressão.
Etapa 2.5.1.3.2.1.2
Expanda usando o método FOIL.
Etapa 2.5.1.3.2.1.2.1
Aplique a propriedade distributiva.
Etapa 2.5.1.3.2.1.2.2
Aplique a propriedade distributiva.
Etapa 2.5.1.3.2.1.2.3
Aplique a propriedade distributiva.
Etapa 2.5.1.3.2.1.3
Simplifique e combine termos semelhantes.
Etapa 2.5.1.3.2.1.3.1
Simplifique cada termo.
Etapa 2.5.1.3.2.1.3.1.1
Multiplique por .
Etapa 2.5.1.3.2.1.3.1.2
Multiplique por .
Etapa 2.5.1.3.2.1.3.1.3
Mova para a esquerda de .
Etapa 2.5.1.3.2.1.3.1.4
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 2.5.1.3.2.1.3.1.5
Multiplique por somando os expoentes.
Etapa 2.5.1.3.2.1.3.1.5.1
Mova .
Etapa 2.5.1.3.2.1.3.1.5.2
Multiplique por .
Etapa 2.5.1.3.2.1.3.2
Some e .
Etapa 2.5.1.3.2.1.3.3
Some e .
Etapa 2.5.1.3.2.1.4
Simplifique.
Etapa 2.5.1.4
Resolva .
Etapa 2.5.1.4.1
Subtraia dos dois lados da desigualdade.
Etapa 2.5.1.4.2
Divida cada termo em por e simplifique.
Etapa 2.5.1.4.2.1
Divida cada termo em por . Ao multiplicar ou dividir os dois lados de uma desigualdade por um valor negativo, inverta a direção do sinal de desigualdade.
Etapa 2.5.1.4.2.2
Simplifique o lado esquerdo.
Etapa 2.5.1.4.2.2.1
Dividir dois valores negativos resulta em um valor positivo.
Etapa 2.5.1.4.2.2.2
Divida por .
Etapa 2.5.1.4.2.3
Simplifique o lado direito.
Etapa 2.5.1.4.2.3.1
Simplifique cada termo.
Etapa 2.5.1.4.2.3.1.1
Mova o número negativo do denominador de .
Etapa 2.5.1.4.2.3.1.2
Reescreva como .
Etapa 2.5.1.4.2.3.1.3
Divida por .
Etapa 2.5.1.4.3
Take the specified root of both sides of the inequality to eliminate the exponent on the left side.
Etapa 2.5.1.4.4
Simplifique a equação.
Etapa 2.5.1.4.4.1
Simplifique o lado esquerdo.
Etapa 2.5.1.4.4.1.1
Elimine os termos abaixo do radical.
Etapa 2.5.1.4.4.2
Simplifique o lado direito.
Etapa 2.5.1.4.4.2.1
Simplifique .
Etapa 2.5.1.4.4.2.1.1
Simplifique a expressão.
Etapa 2.5.1.4.4.2.1.1.1
Reescreva como .
Etapa 2.5.1.4.4.2.1.1.2
Reordene e .
Etapa 2.5.1.4.4.2.1.2
Como os dois termos são quadrados perfeitos, fatore usando a fórmula da diferença de quadrados, em que e .
Etapa 2.5.1.4.5
Escreva em partes.
Etapa 2.5.1.4.5.1
Para encontrar o intervalo da primeira parte, identifique onde o interior do valor absoluto é não negativo.
Etapa 2.5.1.4.5.2
Na parte em que é não negativo, remova o valor absoluto.
Etapa 2.5.1.4.5.3
Encontre o domínio de e a intersecção com .
Etapa 2.5.1.4.5.3.1
Encontre o domínio de .
Etapa 2.5.1.4.5.3.1.1
Defina o radicando em como maior do que ou igual a para encontrar onde a expressão está definida.
Etapa 2.5.1.4.5.3.1.2
Resolva .
Etapa 2.5.1.4.5.3.1.2.1
Simplifique .
Etapa 2.5.1.4.5.3.1.2.1.1
Expanda usando o método FOIL.
Etapa 2.5.1.4.5.3.1.2.1.1.1
Aplique a propriedade distributiva.
Etapa 2.5.1.4.5.3.1.2.1.1.2
Aplique a propriedade distributiva.
Etapa 2.5.1.4.5.3.1.2.1.1.3
Aplique a propriedade distributiva.
Etapa 2.5.1.4.5.3.1.2.1.2
Simplifique e combine termos semelhantes.
Etapa 2.5.1.4.5.3.1.2.1.2.1
Simplifique cada termo.
Etapa 2.5.1.4.5.3.1.2.1.2.1.1
Multiplique por .
Etapa 2.5.1.4.5.3.1.2.1.2.1.2
Multiplique por .
Etapa 2.5.1.4.5.3.1.2.1.2.1.3
Mova para a esquerda de .
Etapa 2.5.1.4.5.3.1.2.1.2.1.4
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 2.5.1.4.5.3.1.2.1.2.1.5
Multiplique por somando os expoentes.
Etapa 2.5.1.4.5.3.1.2.1.2.1.5.1
Mova .
Etapa 2.5.1.4.5.3.1.2.1.2.1.5.2
Multiplique por .
Etapa 2.5.1.4.5.3.1.2.1.2.2
Some e .
Etapa 2.5.1.4.5.3.1.2.1.2.3
Some e .
Etapa 2.5.1.4.5.3.1.2.2
Subtraia dos dois lados da desigualdade.
Etapa 2.5.1.4.5.3.1.2.3
Divida cada termo em por e simplifique.
Etapa 2.5.1.4.5.3.1.2.3.1
Divida cada termo em por . Ao multiplicar ou dividir os dois lados de uma desigualdade por um valor negativo, inverta a direção do sinal de desigualdade.
Etapa 2.5.1.4.5.3.1.2.3.2
Simplifique o lado esquerdo.
Etapa 2.5.1.4.5.3.1.2.3.2.1
Dividir dois valores negativos resulta em um valor positivo.
Etapa 2.5.1.4.5.3.1.2.3.2.2
Divida por .
Etapa 2.5.1.4.5.3.1.2.3.3
Simplifique o lado direito.
Etapa 2.5.1.4.5.3.1.2.3.3.1
Divida por .
Etapa 2.5.1.4.5.3.1.2.4
Take the specified root of both sides of the inequality to eliminate the exponent on the left side.
Etapa 2.5.1.4.5.3.1.2.5
Simplifique a equação.
Etapa 2.5.1.4.5.3.1.2.5.1
Simplifique o lado esquerdo.
Etapa 2.5.1.4.5.3.1.2.5.1.1
Elimine os termos abaixo do radical.
Etapa 2.5.1.4.5.3.1.2.5.2
Simplifique o lado direito.
Etapa 2.5.1.4.5.3.1.2.5.2.1
Simplifique .
Etapa 2.5.1.4.5.3.1.2.5.2.1.1
Reescreva como .
Etapa 2.5.1.4.5.3.1.2.5.2.1.2
Elimine os termos abaixo do radical.
Etapa 2.5.1.4.5.3.1.2.5.2.1.3
O valor absoluto é a distância entre um número e zero. A distância entre e é .
Etapa 2.5.1.4.5.3.1.2.6
Escreva em partes.
Etapa 2.5.1.4.5.3.1.2.6.1
Para encontrar o intervalo da primeira parte, identifique onde o interior do valor absoluto é não negativo.
Etapa 2.5.1.4.5.3.1.2.6.2
Na parte em que é não negativo, remova o valor absoluto.
Etapa 2.5.1.4.5.3.1.2.6.3
Para encontrar o intervalo da segunda parte, identifique onde o interior do valor absoluto é negativo.
Etapa 2.5.1.4.5.3.1.2.6.4
Na parte em que é negativo, remova o valor absoluto e multiplique por .
Etapa 2.5.1.4.5.3.1.2.6.5
Escreva em partes.
Etapa 2.5.1.4.5.3.1.2.7
Encontre a intersecção de e .
Etapa 2.5.1.4.5.3.1.2.8
Resolva quando .
Etapa 2.5.1.4.5.3.1.2.8.1
Divida cada termo em por e simplifique.
Etapa 2.5.1.4.5.3.1.2.8.1.1
Divida cada termo em por . Ao multiplicar ou dividir os dois lados de uma desigualdade por um valor negativo, inverta a direção do sinal de desigualdade.
Etapa 2.5.1.4.5.3.1.2.8.1.2
Simplifique o lado esquerdo.
Etapa 2.5.1.4.5.3.1.2.8.1.2.1
Dividir dois valores negativos resulta em um valor positivo.
Etapa 2.5.1.4.5.3.1.2.8.1.2.2
Divida por .
Etapa 2.5.1.4.5.3.1.2.8.1.3
Simplifique o lado direito.
Etapa 2.5.1.4.5.3.1.2.8.1.3.1
Divida por .
Etapa 2.5.1.4.5.3.1.2.8.2
Encontre a intersecção de e .
Etapa 2.5.1.4.5.3.1.2.9
Encontre a união das soluções.
Etapa 2.5.1.4.5.3.1.3
O domínio consiste em todos os valores de que tornam a expressão definida.
Etapa 2.5.1.4.5.3.2
Encontre a intersecção de e .
Etapa 2.5.1.4.5.4
Para encontrar o intervalo da segunda parte, identifique onde o interior do valor absoluto é negativo.
Etapa 2.5.1.4.5.5
Na parte em que é negativo, remova o valor absoluto e multiplique por .
Etapa 2.5.1.4.5.6
Encontre o domínio de e a intersecção com .
Etapa 2.5.1.4.5.6.1
Encontre o domínio de .
Etapa 2.5.1.4.5.6.1.1
Defina o radicando em como maior do que ou igual a para encontrar onde a expressão está definida.
Etapa 2.5.1.4.5.6.1.2
Resolva .
Etapa 2.5.1.4.5.6.1.2.1
Simplifique .
Etapa 2.5.1.4.5.6.1.2.1.1
Expanda usando o método FOIL.
Etapa 2.5.1.4.5.6.1.2.1.1.1
Aplique a propriedade distributiva.
Etapa 2.5.1.4.5.6.1.2.1.1.2
Aplique a propriedade distributiva.
Etapa 2.5.1.4.5.6.1.2.1.1.3
Aplique a propriedade distributiva.
Etapa 2.5.1.4.5.6.1.2.1.2
Simplifique e combine termos semelhantes.
Etapa 2.5.1.4.5.6.1.2.1.2.1
Simplifique cada termo.
Etapa 2.5.1.4.5.6.1.2.1.2.1.1
Multiplique por .
Etapa 2.5.1.4.5.6.1.2.1.2.1.2
Multiplique por .
Etapa 2.5.1.4.5.6.1.2.1.2.1.3
Mova para a esquerda de .
Etapa 2.5.1.4.5.6.1.2.1.2.1.4
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 2.5.1.4.5.6.1.2.1.2.1.5
Multiplique por somando os expoentes.
Etapa 2.5.1.4.5.6.1.2.1.2.1.5.1
Mova .
Etapa 2.5.1.4.5.6.1.2.1.2.1.5.2
Multiplique por .
Etapa 2.5.1.4.5.6.1.2.1.2.2
Some e .
Etapa 2.5.1.4.5.6.1.2.1.2.3
Some e .
Etapa 2.5.1.4.5.6.1.2.2
Subtraia dos dois lados da desigualdade.
Etapa 2.5.1.4.5.6.1.2.3
Divida cada termo em por e simplifique.
Etapa 2.5.1.4.5.6.1.2.3.1
Divida cada termo em por . Ao multiplicar ou dividir os dois lados de uma desigualdade por um valor negativo, inverta a direção do sinal de desigualdade.
Etapa 2.5.1.4.5.6.1.2.3.2
Simplifique o lado esquerdo.
Etapa 2.5.1.4.5.6.1.2.3.2.1
Dividir dois valores negativos resulta em um valor positivo.
Etapa 2.5.1.4.5.6.1.2.3.2.2
Divida por .
Etapa 2.5.1.4.5.6.1.2.3.3
Simplifique o lado direito.
Etapa 2.5.1.4.5.6.1.2.3.3.1
Divida por .
Etapa 2.5.1.4.5.6.1.2.4
Take the specified root of both sides of the inequality to eliminate the exponent on the left side.
Etapa 2.5.1.4.5.6.1.2.5
Simplifique a equação.
Etapa 2.5.1.4.5.6.1.2.5.1
Simplifique o lado esquerdo.
Etapa 2.5.1.4.5.6.1.2.5.1.1
Elimine os termos abaixo do radical.
Etapa 2.5.1.4.5.6.1.2.5.2
Simplifique o lado direito.
Etapa 2.5.1.4.5.6.1.2.5.2.1
Simplifique .
Etapa 2.5.1.4.5.6.1.2.5.2.1.1
Reescreva como .
Etapa 2.5.1.4.5.6.1.2.5.2.1.2
Elimine os termos abaixo do radical.
Etapa 2.5.1.4.5.6.1.2.5.2.1.3
O valor absoluto é a distância entre um número e zero. A distância entre e é .
Etapa 2.5.1.4.5.6.1.2.6
Escreva em partes.
Etapa 2.5.1.4.5.6.1.2.6.1
Para encontrar o intervalo da primeira parte, identifique onde o interior do valor absoluto é não negativo.
Etapa 2.5.1.4.5.6.1.2.6.2
Na parte em que é não negativo, remova o valor absoluto.
Etapa 2.5.1.4.5.6.1.2.6.3
Para encontrar o intervalo da segunda parte, identifique onde o interior do valor absoluto é negativo.
Etapa 2.5.1.4.5.6.1.2.6.4
Na parte em que é negativo, remova o valor absoluto e multiplique por .
Etapa 2.5.1.4.5.6.1.2.6.5
Escreva em partes.
Etapa 2.5.1.4.5.6.1.2.7
Encontre a intersecção de e .
Etapa 2.5.1.4.5.6.1.2.8
Resolva quando .
Etapa 2.5.1.4.5.6.1.2.8.1
Divida cada termo em por e simplifique.
Etapa 2.5.1.4.5.6.1.2.8.1.1
Divida cada termo em por . Ao multiplicar ou dividir os dois lados de uma desigualdade por um valor negativo, inverta a direção do sinal de desigualdade.
Etapa 2.5.1.4.5.6.1.2.8.1.2
Simplifique o lado esquerdo.
Etapa 2.5.1.4.5.6.1.2.8.1.2.1
Dividir dois valores negativos resulta em um valor positivo.
Etapa 2.5.1.4.5.6.1.2.8.1.2.2
Divida por .
Etapa 2.5.1.4.5.6.1.2.8.1.3
Simplifique o lado direito.
Etapa 2.5.1.4.5.6.1.2.8.1.3.1
Divida por .
Etapa 2.5.1.4.5.6.1.2.8.2
Encontre a intersecção de e .
Etapa 2.5.1.4.5.6.1.2.9
Encontre a união das soluções.
Etapa 2.5.1.4.5.6.1.3
O domínio consiste em todos os valores de que tornam a expressão definida.
Etapa 2.5.1.4.5.6.2
Encontre a intersecção de e .
Etapa 2.5.1.4.5.7
Escreva em partes.
Etapa 2.5.1.4.6
Encontre a intersecção de e .
Nenhuma solução
Etapa 2.5.1.4.7
Resolva quando .
Etapa 2.5.1.4.7.1
Divida cada termo em por e simplifique.
Etapa 2.5.1.4.7.1.1
Divida cada termo em por . Ao multiplicar ou dividir os dois lados de uma desigualdade por um valor negativo, inverta a direção do sinal de desigualdade.
Etapa 2.5.1.4.7.1.2
Simplifique o lado esquerdo.
Etapa 2.5.1.4.7.1.2.1
Dividir dois valores negativos resulta em um valor positivo.
Etapa 2.5.1.4.7.1.2.2
Divida por .
Etapa 2.5.1.4.7.1.3
Simplifique o lado direito.
Etapa 2.5.1.4.7.1.3.1
Mova o número negativo do denominador de .
Etapa 2.5.1.4.7.1.3.2
Reescreva como .
Etapa 2.5.1.4.7.2
Encontre a intersecção de e .
Etapa 2.5.1.4.8
Encontre a união das soluções.
Etapa 2.5.2
Encontre a intersecção de e .
Etapa 2.6
Resolva quando .
Etapa 2.6.1
Resolva para .
Etapa 2.6.1.1
Reescreva de forma que esteja do lado esquerdo da desigualdade.
Etapa 2.6.1.2
Para remover o radical no lado esquerdo da desigualdade, eleve ao quadrado os dois lados da desigualdade.
Etapa 2.6.1.3
Simplifique cada lado da desigualdade.
Etapa 2.6.1.3.1
Use para reescrever como .
Etapa 2.6.1.3.2
Simplifique o lado esquerdo.
Etapa 2.6.1.3.2.1
Simplifique .
Etapa 2.6.1.3.2.1.1
Multiplique os expoentes em .
Etapa 2.6.1.3.2.1.1.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 2.6.1.3.2.1.1.2
Cancele o fator comum de .
Etapa 2.6.1.3.2.1.1.2.1
Cancele o fator comum.
Etapa 2.6.1.3.2.1.1.2.2
Reescreva a expressão.
Etapa 2.6.1.3.2.1.2
Expanda usando o método FOIL.
Etapa 2.6.1.3.2.1.2.1
Aplique a propriedade distributiva.
Etapa 2.6.1.3.2.1.2.2
Aplique a propriedade distributiva.
Etapa 2.6.1.3.2.1.2.3
Aplique a propriedade distributiva.
Etapa 2.6.1.3.2.1.3
Simplifique e combine termos semelhantes.
Etapa 2.6.1.3.2.1.3.1
Simplifique cada termo.
Etapa 2.6.1.3.2.1.3.1.1
Multiplique por .
Etapa 2.6.1.3.2.1.3.1.2
Multiplique por .
Etapa 2.6.1.3.2.1.3.1.3
Mova para a esquerda de .
Etapa 2.6.1.3.2.1.3.1.4
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 2.6.1.3.2.1.3.1.5
Multiplique por somando os expoentes.
Etapa 2.6.1.3.2.1.3.1.5.1
Mova .
Etapa 2.6.1.3.2.1.3.1.5.2
Multiplique por .
Etapa 2.6.1.3.2.1.3.2
Some e .
Etapa 2.6.1.3.2.1.3.3
Some e .
Etapa 2.6.1.3.2.1.4
Simplifique.
Etapa 2.6.1.3.3
Simplifique o lado direito.
Etapa 2.6.1.3.3.1
Simplifique .
Etapa 2.6.1.3.3.1.1
Aplique a regra do produto a .
Etapa 2.6.1.3.3.1.2
Eleve à potência de .
Etapa 2.6.1.3.3.1.3
Multiplique por .
Etapa 2.6.1.4
Resolva .
Etapa 2.6.1.4.1
Subtraia dos dois lados da desigualdade.
Etapa 2.6.1.4.2
Divida cada termo em por e simplifique.
Etapa 2.6.1.4.2.1
Divida cada termo em por . Ao multiplicar ou dividir os dois lados de uma desigualdade por um valor negativo, inverta a direção do sinal de desigualdade.
Etapa 2.6.1.4.2.2
Simplifique o lado esquerdo.
Etapa 2.6.1.4.2.2.1
Dividir dois valores negativos resulta em um valor positivo.
Etapa 2.6.1.4.2.2.2
Divida por .
Etapa 2.6.1.4.2.3
Simplifique o lado direito.
Etapa 2.6.1.4.2.3.1
Simplifique cada termo.
Etapa 2.6.1.4.2.3.1.1
Mova o número negativo do denominador de .
Etapa 2.6.1.4.2.3.1.2
Reescreva como .
Etapa 2.6.1.4.2.3.1.3
Divida por .
Etapa 2.6.1.4.3
Take the specified root of both sides of the inequality to eliminate the exponent on the left side.
Etapa 2.6.1.4.4
Simplifique a equação.
Etapa 2.6.1.4.4.1
Simplifique o lado esquerdo.
Etapa 2.6.1.4.4.1.1
Elimine os termos abaixo do radical.
Etapa 2.6.1.4.4.2
Simplifique o lado direito.
Etapa 2.6.1.4.4.2.1
Simplifique .
Etapa 2.6.1.4.4.2.1.1
Simplifique a expressão.
Etapa 2.6.1.4.4.2.1.1.1
Reescreva como .
Etapa 2.6.1.4.4.2.1.1.2
Reordene e .
Etapa 2.6.1.4.4.2.1.2
Como os dois termos são quadrados perfeitos, fatore usando a fórmula da diferença de quadrados, em que e .
Etapa 2.6.1.4.5
Escreva em partes.
Etapa 2.6.1.4.5.1
Para encontrar o intervalo da primeira parte, identifique onde o interior do valor absoluto é não negativo.
Etapa 2.6.1.4.5.2
Na parte em que é não negativo, remova o valor absoluto.
Etapa 2.6.1.4.5.3
Encontre o domínio de e a intersecção com .
Etapa 2.6.1.4.5.3.1
Encontre o domínio de .
Etapa 2.6.1.4.5.3.1.1
Defina o radicando em como maior do que ou igual a para encontrar onde a expressão está definida.
Etapa 2.6.1.4.5.3.1.2
Resolva .
Etapa 2.6.1.4.5.3.1.2.1
Simplifique .
Etapa 2.6.1.4.5.3.1.2.1.1
Expanda usando o método FOIL.
Etapa 2.6.1.4.5.3.1.2.1.1.1
Aplique a propriedade distributiva.
Etapa 2.6.1.4.5.3.1.2.1.1.2
Aplique a propriedade distributiva.
Etapa 2.6.1.4.5.3.1.2.1.1.3
Aplique a propriedade distributiva.
Etapa 2.6.1.4.5.3.1.2.1.2
Simplifique e combine termos semelhantes.
Etapa 2.6.1.4.5.3.1.2.1.2.1
Simplifique cada termo.
Etapa 2.6.1.4.5.3.1.2.1.2.1.1
Multiplique por .
Etapa 2.6.1.4.5.3.1.2.1.2.1.2
Multiplique por .
Etapa 2.6.1.4.5.3.1.2.1.2.1.3
Mova para a esquerda de .
Etapa 2.6.1.4.5.3.1.2.1.2.1.4
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 2.6.1.4.5.3.1.2.1.2.1.5
Multiplique por somando os expoentes.
Etapa 2.6.1.4.5.3.1.2.1.2.1.5.1
Mova .
Etapa 2.6.1.4.5.3.1.2.1.2.1.5.2
Multiplique por .
Etapa 2.6.1.4.5.3.1.2.1.2.2
Some e .
Etapa 2.6.1.4.5.3.1.2.1.2.3
Some e .
Etapa 2.6.1.4.5.3.1.2.2
Subtraia dos dois lados da desigualdade.
Etapa 2.6.1.4.5.3.1.2.3
Divida cada termo em por e simplifique.
Etapa 2.6.1.4.5.3.1.2.3.1
Divida cada termo em por . Ao multiplicar ou dividir os dois lados de uma desigualdade por um valor negativo, inverta a direção do sinal de desigualdade.
Etapa 2.6.1.4.5.3.1.2.3.2
Simplifique o lado esquerdo.
Etapa 2.6.1.4.5.3.1.2.3.2.1
Dividir dois valores negativos resulta em um valor positivo.
Etapa 2.6.1.4.5.3.1.2.3.2.2
Divida por .
Etapa 2.6.1.4.5.3.1.2.3.3
Simplifique o lado direito.
Etapa 2.6.1.4.5.3.1.2.3.3.1
Divida por .
Etapa 2.6.1.4.5.3.1.2.4
Take the specified root of both sides of the inequality to eliminate the exponent on the left side.
Etapa 2.6.1.4.5.3.1.2.5
Simplifique a equação.
Etapa 2.6.1.4.5.3.1.2.5.1
Simplifique o lado esquerdo.
Etapa 2.6.1.4.5.3.1.2.5.1.1
Elimine os termos abaixo do radical.
Etapa 2.6.1.4.5.3.1.2.5.2
Simplifique o lado direito.
Etapa 2.6.1.4.5.3.1.2.5.2.1
Simplifique .
Etapa 2.6.1.4.5.3.1.2.5.2.1.1
Reescreva como .
Etapa 2.6.1.4.5.3.1.2.5.2.1.2
Elimine os termos abaixo do radical.
Etapa 2.6.1.4.5.3.1.2.5.2.1.3
O valor absoluto é a distância entre um número e zero. A distância entre e é .
Etapa 2.6.1.4.5.3.1.2.6
Escreva em partes.
Etapa 2.6.1.4.5.3.1.2.6.1
Para encontrar o intervalo da primeira parte, identifique onde o interior do valor absoluto é não negativo.
Etapa 2.6.1.4.5.3.1.2.6.2
Na parte em que é não negativo, remova o valor absoluto.
Etapa 2.6.1.4.5.3.1.2.6.3
Para encontrar o intervalo da segunda parte, identifique onde o interior do valor absoluto é negativo.
Etapa 2.6.1.4.5.3.1.2.6.4
Na parte em que é negativo, remova o valor absoluto e multiplique por .
Etapa 2.6.1.4.5.3.1.2.6.5
Escreva em partes.
Etapa 2.6.1.4.5.3.1.2.7
Encontre a intersecção de e .
Etapa 2.6.1.4.5.3.1.2.8
Resolva quando .
Etapa 2.6.1.4.5.3.1.2.8.1
Divida cada termo em por e simplifique.
Etapa 2.6.1.4.5.3.1.2.8.1.1
Divida cada termo em por . Ao multiplicar ou dividir os dois lados de uma desigualdade por um valor negativo, inverta a direção do sinal de desigualdade.
Etapa 2.6.1.4.5.3.1.2.8.1.2
Simplifique o lado esquerdo.
Etapa 2.6.1.4.5.3.1.2.8.1.2.1
Dividir dois valores negativos resulta em um valor positivo.
Etapa 2.6.1.4.5.3.1.2.8.1.2.2
Divida por .
Etapa 2.6.1.4.5.3.1.2.8.1.3
Simplifique o lado direito.
Etapa 2.6.1.4.5.3.1.2.8.1.3.1
Divida por .
Etapa 2.6.1.4.5.3.1.2.8.2
Encontre a intersecção de e .
Etapa 2.6.1.4.5.3.1.2.9
Encontre a união das soluções.
Etapa 2.6.1.4.5.3.1.3
O domínio consiste em todos os valores de que tornam a expressão definida.
Etapa 2.6.1.4.5.3.2
Encontre a intersecção de e .
Etapa 2.6.1.4.5.4
Para encontrar o intervalo da segunda parte, identifique onde o interior do valor absoluto é negativo.
Etapa 2.6.1.4.5.5
Na parte em que é negativo, remova o valor absoluto e multiplique por .
Etapa 2.6.1.4.5.6
Encontre o domínio de e a intersecção com .
Etapa 2.6.1.4.5.6.1
Encontre o domínio de .
Etapa 2.6.1.4.5.6.1.1
Defina o radicando em como maior do que ou igual a para encontrar onde a expressão está definida.
Etapa 2.6.1.4.5.6.1.2
Resolva .
Etapa 2.6.1.4.5.6.1.2.1
Simplifique .
Etapa 2.6.1.4.5.6.1.2.1.1
Expanda usando o método FOIL.
Etapa 2.6.1.4.5.6.1.2.1.1.1
Aplique a propriedade distributiva.
Etapa 2.6.1.4.5.6.1.2.1.1.2
Aplique a propriedade distributiva.
Etapa 2.6.1.4.5.6.1.2.1.1.3
Aplique a propriedade distributiva.
Etapa 2.6.1.4.5.6.1.2.1.2
Simplifique e combine termos semelhantes.
Etapa 2.6.1.4.5.6.1.2.1.2.1
Simplifique cada termo.
Etapa 2.6.1.4.5.6.1.2.1.2.1.1
Multiplique por .
Etapa 2.6.1.4.5.6.1.2.1.2.1.2
Multiplique por .
Etapa 2.6.1.4.5.6.1.2.1.2.1.3
Mova para a esquerda de .
Etapa 2.6.1.4.5.6.1.2.1.2.1.4
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 2.6.1.4.5.6.1.2.1.2.1.5
Multiplique por somando os expoentes.
Etapa 2.6.1.4.5.6.1.2.1.2.1.5.1
Mova .
Etapa 2.6.1.4.5.6.1.2.1.2.1.5.2
Multiplique por .
Etapa 2.6.1.4.5.6.1.2.1.2.2
Some e .
Etapa 2.6.1.4.5.6.1.2.1.2.3
Some e .
Etapa 2.6.1.4.5.6.1.2.2
Subtraia dos dois lados da desigualdade.
Etapa 2.6.1.4.5.6.1.2.3
Divida cada termo em por e simplifique.
Etapa 2.6.1.4.5.6.1.2.3.1
Divida cada termo em por . Ao multiplicar ou dividir os dois lados de uma desigualdade por um valor negativo, inverta a direção do sinal de desigualdade.
Etapa 2.6.1.4.5.6.1.2.3.2
Simplifique o lado esquerdo.
Etapa 2.6.1.4.5.6.1.2.3.2.1
Dividir dois valores negativos resulta em um valor positivo.
Etapa 2.6.1.4.5.6.1.2.3.2.2
Divida por .
Etapa 2.6.1.4.5.6.1.2.3.3
Simplifique o lado direito.
Etapa 2.6.1.4.5.6.1.2.3.3.1
Divida por .
Etapa 2.6.1.4.5.6.1.2.4
Take the specified root of both sides of the inequality to eliminate the exponent on the left side.
Etapa 2.6.1.4.5.6.1.2.5
Simplifique a equação.
Etapa 2.6.1.4.5.6.1.2.5.1
Simplifique o lado esquerdo.
Etapa 2.6.1.4.5.6.1.2.5.1.1
Elimine os termos abaixo do radical.
Etapa 2.6.1.4.5.6.1.2.5.2
Simplifique o lado direito.
Etapa 2.6.1.4.5.6.1.2.5.2.1
Simplifique .
Etapa 2.6.1.4.5.6.1.2.5.2.1.1
Reescreva como .
Etapa 2.6.1.4.5.6.1.2.5.2.1.2
Elimine os termos abaixo do radical.
Etapa 2.6.1.4.5.6.1.2.5.2.1.3
O valor absoluto é a distância entre um número e zero. A distância entre e é .
Etapa 2.6.1.4.5.6.1.2.6
Escreva em partes.
Etapa 2.6.1.4.5.6.1.2.6.1
Para encontrar o intervalo da primeira parte, identifique onde o interior do valor absoluto é não negativo.
Etapa 2.6.1.4.5.6.1.2.6.2
Na parte em que é não negativo, remova o valor absoluto.
Etapa 2.6.1.4.5.6.1.2.6.3
Para encontrar o intervalo da segunda parte, identifique onde o interior do valor absoluto é negativo.
Etapa 2.6.1.4.5.6.1.2.6.4
Na parte em que é negativo, remova o valor absoluto e multiplique por .
Etapa 2.6.1.4.5.6.1.2.6.5
Escreva em partes.
Etapa 2.6.1.4.5.6.1.2.7
Encontre a intersecção de e .
Etapa 2.6.1.4.5.6.1.2.8
Resolva quando .
Etapa 2.6.1.4.5.6.1.2.8.1
Divida cada termo em por e simplifique.
Etapa 2.6.1.4.5.6.1.2.8.1.1
Divida cada termo em por . Ao multiplicar ou dividir os dois lados de uma desigualdade por um valor negativo, inverta a direção do sinal de desigualdade.
Etapa 2.6.1.4.5.6.1.2.8.1.2
Simplifique o lado esquerdo.
Etapa 2.6.1.4.5.6.1.2.8.1.2.1
Dividir dois valores negativos resulta em um valor positivo.
Etapa 2.6.1.4.5.6.1.2.8.1.2.2
Divida por .
Etapa 2.6.1.4.5.6.1.2.8.1.3
Simplifique o lado direito.
Etapa 2.6.1.4.5.6.1.2.8.1.3.1
Divida por .
Etapa 2.6.1.4.5.6.1.2.8.2
Encontre a intersecção de e .
Etapa 2.6.1.4.5.6.1.2.9
Encontre a união das soluções.
Etapa 2.6.1.4.5.6.1.3
O domínio consiste em todos os valores de que tornam a expressão definida.
Etapa 2.6.1.4.5.6.2
Encontre a intersecção de e .
Etapa 2.6.1.4.5.7
Escreva em partes.
Etapa 2.6.1.4.6
Encontre a intersecção de e .
Nenhuma solução
Etapa 2.6.1.4.7
Resolva quando .
Etapa 2.6.1.4.7.1
Divida cada termo em por e simplifique.
Etapa 2.6.1.4.7.1.1
Divida cada termo em por . Ao multiplicar ou dividir os dois lados de uma desigualdade por um valor negativo, inverta a direção do sinal de desigualdade.
Etapa 2.6.1.4.7.1.2
Simplifique o lado esquerdo.
Etapa 2.6.1.4.7.1.2.1
Dividir dois valores negativos resulta em um valor positivo.
Etapa 2.6.1.4.7.1.2.2
Divida por .
Etapa 2.6.1.4.7.1.3
Simplifique o lado direito.
Etapa 2.6.1.4.7.1.3.1
Mova o número negativo do denominador de .
Etapa 2.6.1.4.7.1.3.2
Reescreva como .
Etapa 2.6.1.4.7.2
Encontre a intersecção de e .
Etapa 2.6.1.4.8
Encontre a união das soluções.
Etapa 2.6.2
Encontre a intersecção de e .
Etapa 2.7
Encontre a união das soluções.
Etapa 3
O domínio da expressão consiste em todos os números reais, exceto quando a expressão é indefinida. Nesse caso, não existe um número real que torne a expressão definida.
Nenhuma solução