Pré-cálculo Exemplos

Determina o domínio f(x) = square root of (x+5)/((x-7)(x-2))
Etapa 1
Defina o radicando em como maior do que ou igual a para encontrar onde a expressão está definida.
Etapa 2
Resolva .
Toque para ver mais passagens...
Etapa 2.1
Encontre todos os valores em que a expressão muda de negativo para positivo, definindo cada fator igual a . Depois, resolva.
Etapa 2.2
Subtraia dos dois lados da equação.
Etapa 2.3
Some aos dois lados da equação.
Etapa 2.4
Some aos dois lados da equação.
Etapa 2.5
Resolva cada fator para encontrar os valores em que a expressão de valor absoluto passa de negativa para positiva.
Etapa 2.6
Consolide as soluções.
Etapa 2.7
Encontre o domínio de .
Toque para ver mais passagens...
Etapa 2.7.1
Defina o denominador em como igual a para encontrar onde a expressão está indefinida.
Etapa 2.7.2
Resolva .
Toque para ver mais passagens...
Etapa 2.7.2.1
Se qualquer fator individual no lado esquerdo da equação for igual a , toda a expressão será igual a .
Etapa 2.7.2.2
Defina como igual a e resolva para .
Toque para ver mais passagens...
Etapa 2.7.2.2.1
Defina como igual a .
Etapa 2.7.2.2.2
Some aos dois lados da equação.
Etapa 2.7.2.3
Defina como igual a e resolva para .
Toque para ver mais passagens...
Etapa 2.7.2.3.1
Defina como igual a .
Etapa 2.7.2.3.2
Some aos dois lados da equação.
Etapa 2.7.2.4
A solução final são todos os valores que tornam verdadeiro.
Etapa 2.7.3
O domínio consiste em todos os valores de que tornam a expressão definida.
Etapa 2.8
Use cada raiz para criar intervalos de teste.
Etapa 2.9
Escolha um valor de teste de cada intervalo e substitua esse valor pela desigualdade original para determinar quais intervalos satisfazem a desigualdade.
Toque para ver mais passagens...
Etapa 2.9.1
Teste um valor no intervalo e veja se ele torna a desigualdade verdadeira.
Toque para ver mais passagens...
Etapa 2.9.1.1
Escolha um valor no intervalo e veja se ele torna a desigualdade original verdadeira.
Etapa 2.9.1.2
Substitua por na desigualdade original.
Etapa 2.9.1.3
O lado esquerdo é menor do que o lado direito , o que significa que a afirmação em questão é falsa.
Falso
Falso
Etapa 2.9.2
Teste um valor no intervalo e veja se ele torna a desigualdade verdadeira.
Toque para ver mais passagens...
Etapa 2.9.2.1
Escolha um valor no intervalo e veja se ele torna a desigualdade original verdadeira.
Etapa 2.9.2.2
Substitua por na desigualdade original.
Etapa 2.9.2.3
O lado esquerdo é maior do que o lado direito , o que significa que a afirmação em questão é sempre verdadeira.
Verdadeiro
Verdadeiro
Etapa 2.9.3
Teste um valor no intervalo e veja se ele torna a desigualdade verdadeira.
Toque para ver mais passagens...
Etapa 2.9.3.1
Escolha um valor no intervalo e veja se ele torna a desigualdade original verdadeira.
Etapa 2.9.3.2
Substitua por na desigualdade original.
Etapa 2.9.3.3
O lado esquerdo é menor do que o lado direito , o que significa que a afirmação em questão é falsa.
Falso
Falso
Etapa 2.9.4
Teste um valor no intervalo e veja se ele torna a desigualdade verdadeira.
Toque para ver mais passagens...
Etapa 2.9.4.1
Escolha um valor no intervalo e veja se ele torna a desigualdade original verdadeira.
Etapa 2.9.4.2
Substitua por na desigualdade original.
Etapa 2.9.4.3
O lado esquerdo é maior do que o lado direito , o que significa que a afirmação em questão é sempre verdadeira.
Verdadeiro
Verdadeiro
Etapa 2.9.5
Compare os intervalos para determinar quais satisfazem a desigualdade original.
Falso
Verdadeiro
Falso
Verdadeiro
Falso
Verdadeiro
Falso
Verdadeiro
Etapa 2.10
A solução consiste em todos os intervalos verdadeiros.
ou
ou
Etapa 3
Defina o denominador em como igual a para encontrar onde a expressão está indefinida.
Etapa 4
Resolva .
Toque para ver mais passagens...
Etapa 4.1
Se qualquer fator individual no lado esquerdo da equação for igual a , toda a expressão será igual a .
Etapa 4.2
Defina como igual a e resolva para .
Toque para ver mais passagens...
Etapa 4.2.1
Defina como igual a .
Etapa 4.2.2
Some aos dois lados da equação.
Etapa 4.3
Defina como igual a e resolva para .
Toque para ver mais passagens...
Etapa 4.3.1
Defina como igual a .
Etapa 4.3.2
Some aos dois lados da equação.
Etapa 4.4
A solução final são todos os valores que tornam verdadeiro.
Etapa 5
O domínio consiste em todos os valores de que tornam a expressão definida.
Notação de intervalo:
Notação de construtor de conjuntos:
Etapa 6