Insira um problema...
Pré-álgebra Exemplos
Etapa 1
Simplifique cada termo na equação para definir o lado direito como igual a . A forma padrão de uma elipse ou hipérbole exige que o lado direito da equação seja .
Etapa 2
Esta é a forma de uma hipérbole. Use-a para determinar os valores usados para encontrar os vértices e as assíntotas da hipérbole.
Etapa 3
Associe os valores nesta hipérbole com os da forma padrão. A variável representa o deslocamento de x em relação à origem, representa o deslocamento de y em relação à origem, .
Etapa 4
O centro de uma hipérbole segue a forma de . Substitua os valores de e .
Etapa 5
Etapa 5.1
Encontre a distância do centro até um foco da hipérbole usando a seguinte fórmula.
Etapa 5.2
Substitua os valores de e na fórmula.
Etapa 5.3
Simplifique.
Etapa 5.3.1
Aplique a regra do produto a .
Etapa 5.3.2
Eleve à potência de .
Etapa 5.3.3
Eleve à potência de .
Etapa 5.3.4
Eleve à potência de .
Etapa 5.3.5
Para escrever como fração com um denominador comum, multiplique por .
Etapa 5.3.6
Combine e .
Etapa 5.3.7
Combine os numeradores em relação ao denominador comum.
Etapa 5.3.8
Simplifique o numerador.
Etapa 5.3.8.1
Multiplique por .
Etapa 5.3.8.2
Some e .
Etapa 5.3.9
Reescreva como .
Etapa 5.3.10
Simplifique o numerador.
Etapa 5.3.10.1
Reescreva como .
Etapa 5.3.10.1.1
Fatore de .
Etapa 5.3.10.1.2
Reescreva como .
Etapa 5.3.10.2
Elimine os termos abaixo do radical.
Etapa 5.3.11
Simplifique o denominador.
Etapa 5.3.11.1
Reescreva como .
Etapa 5.3.11.2
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Etapa 6
Etapa 6.1
O primeiro vértice de uma hipérbole pode ser encontrado ao somar com .
Etapa 6.2
Substitua os valores conhecidos de , e na fórmula e simplifique.
Etapa 6.3
O segundo vértice de uma hipérbole pode ser encontrado ao subtrair de .
Etapa 6.4
Substitua os valores conhecidos de , e na fórmula e simplifique.
Etapa 6.5
Os vértices de uma hipérbole seguem a forma . As hipérboles têm dois vértices.
Etapa 7
Etapa 7.1
O primeiro foco de uma hipérbole pode ser encontrado ao somar com .
Etapa 7.2
Substitua os valores conhecidos de , e na fórmula e simplifique.
Etapa 7.3
O segundo foco de uma hipérbole pode ser encontrado ao subtrair de .
Etapa 7.4
Substitua os valores conhecidos de , e na fórmula e simplifique.
Etapa 7.5
O ponto imaginário de uma hipérbole segue a forma de . As hipérboles têm dois pontos imaginários.
Etapa 8
Etapa 8.1
Encontre a excentricidade usando a seguinte fórmula.
Etapa 8.2
Substitua os valores de e na fórmula.
Etapa 8.3
Simplifique.
Etapa 8.3.1
Multiplique o numerador pelo inverso do denominador.
Etapa 8.3.2
Aplique a regra do produto a .
Etapa 8.3.3
Eleve à potência de .
Etapa 8.3.4
Eleve à potência de .
Etapa 8.3.5
Eleve à potência de .
Etapa 8.3.6
Para escrever como fração com um denominador comum, multiplique por .
Etapa 8.3.7
Combine e .
Etapa 8.3.8
Combine os numeradores em relação ao denominador comum.
Etapa 8.3.9
Simplifique o numerador.
Etapa 8.3.9.1
Multiplique por .
Etapa 8.3.9.2
Some e .
Etapa 8.3.10
Reescreva como .
Etapa 8.3.11
Simplifique o numerador.
Etapa 8.3.11.1
Reescreva como .
Etapa 8.3.11.1.1
Fatore de .
Etapa 8.3.11.1.2
Reescreva como .
Etapa 8.3.11.2
Elimine os termos abaixo do radical.
Etapa 8.3.12
Simplifique o denominador.
Etapa 8.3.12.1
Reescreva como .
Etapa 8.3.12.2
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Etapa 8.3.13
Simplifique os termos.
Etapa 8.3.13.1
Cancele o fator comum de .
Etapa 8.3.13.1.1
Fatore de .
Etapa 8.3.13.1.2
Fatore de .
Etapa 8.3.13.1.3
Cancele o fator comum.
Etapa 8.3.13.1.4
Reescreva a expressão.
Etapa 8.3.13.2
Cancele o fator comum de .
Etapa 8.3.13.2.1
Cancele o fator comum.
Etapa 8.3.13.2.2
Reescreva a expressão.
Etapa 8.3.13.3
Combine e .
Etapa 9
Etapa 9.1
Encontre o valor do parâmetro focal da hipérbole usando a seguinte fórmula.
Etapa 9.2
Substitua os valores de e na fórmula.
Etapa 9.3
Simplifique.
Etapa 9.3.1
Cancele o fator comum de e .
Etapa 9.3.1.1
Fatore de .
Etapa 9.3.1.2
Cancele os fatores comuns.
Etapa 9.3.1.2.1
Fatore de .
Etapa 9.3.1.2.2
Cancele o fator comum.
Etapa 9.3.1.2.3
Reescreva a expressão.
Etapa 9.3.2
Multiplique o numerador pelo inverso do denominador.
Etapa 9.3.3
Multiplique por .
Etapa 9.3.4
Combine e simplifique o denominador.
Etapa 9.3.4.1
Multiplique por .
Etapa 9.3.4.2
Eleve à potência de .
Etapa 9.3.4.3
Eleve à potência de .
Etapa 9.3.4.4
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 9.3.4.5
Some e .
Etapa 9.3.4.6
Reescreva como .
Etapa 9.3.4.6.1
Use para reescrever como .
Etapa 9.3.4.6.2
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 9.3.4.6.3
Combine e .
Etapa 9.3.4.6.4
Cancele o fator comum de .
Etapa 9.3.4.6.4.1
Cancele o fator comum.
Etapa 9.3.4.6.4.2
Reescreva a expressão.
Etapa 9.3.4.6.5
Avalie o expoente.
Etapa 9.3.5
Cancele o fator comum de e .
Etapa 9.3.5.1
Fatore de .
Etapa 9.3.5.2
Cancele os fatores comuns.
Etapa 9.3.5.2.1
Fatore de .
Etapa 9.3.5.2.2
Cancele o fator comum.
Etapa 9.3.5.2.3
Reescreva a expressão.
Etapa 9.3.6
Multiplique .
Etapa 9.3.6.1
Multiplique por .
Etapa 9.3.6.2
Multiplique por .
Etapa 10
As assíntotas seguem a forma , porque esta hipérbole se abre para a esquerda e para a direita.
Etapa 11
Etapa 11.1
Some e .
Etapa 11.2
Combine e .
Etapa 12
Etapa 12.1
Some e .
Etapa 12.2
Combine e .
Etapa 12.3
Mova para a esquerda de .
Etapa 13
Essa hipérbole tem duas assíntotas.
Etapa 14
Esses valores representam os valores importantes para representar graficamente e analisar uma hipérbole.
Centro:
Vértices:
Ponto imaginário:
Excentricidade:
Parâmetro focal:
Assíntotas: ,
Etapa 15