Insira um problema...
Pré-álgebra Exemplos
Etapa 1
Etapa 1.1
Fatore de .
Etapa 1.1.1
Fatore de .
Etapa 1.1.2
Fatore de .
Etapa 1.1.3
Fatore de .
Etapa 1.2
Reduza a expressão cancelando os fatores comuns.
Etapa 1.2.1
Fatore de .
Etapa 1.2.2
Fatore de .
Etapa 1.2.3
Cancele o fator comum.
Etapa 1.2.4
Reescreva a expressão.
Etapa 2
Etapa 2.1
Encontrar o MMC de uma lista de valores é o mesmo que encontrar o MMC dos denominadores desses valores.
Etapa 2.2
Since contains both numbers and variables, there are four steps to find the LCM. Find LCM for the numeric, variable, and compound variable parts. Then, multiply them all together.
As etapas para encontrar o MMC de são:
1. Encontre o MMC da parte numérica .
2. Encontre o MMC da parte variável .
3. Encontre o MMC da parte variável composta .
4. Multiplique todos os MMCs juntos.
Etapa 2.3
O MMC é o menor número positivo pelo qual todos os números se dividem uniformemente.
1. Liste os fatores primos de cada número.
2. Multiplique cada fator pelo maior número de vezes em que ele ocorre em cada número.
Etapa 2.4
O número não é primo porque tem apenas um fator positivo, que é ele mesmo.
Não é primo
Etapa 2.5
O MMC de é o resultado da multiplicação de todos os fatores primos pelo maior número de vezes que eles ocorrem em qualquer um dos números.
Etapa 2.6
O fator de é o próprio .
ocorre vez.
Etapa 2.7
O MMC de é o resultado da multiplicação de todos os fatores primos pelo maior número de vezes que eles ocorrem em qualquer um dos termos.
Etapa 2.8
O fator de é o próprio .
ocorre vez.
Etapa 2.9
O MMC de é o resultado da multiplicação de todos os fatores pelo maior número de vezes que eles ocorrem em qualquer um dos termos.
Etapa 2.10
O mínimo múltiplo comum de alguns números é o menor número do qual os números são fatores.
Etapa 3
Etapa 3.1
Multiplique cada termo em por .
Etapa 3.2
Simplifique o lado esquerdo.
Etapa 3.2.1
Cancele o fator comum de .
Etapa 3.2.1.1
Cancele o fator comum.
Etapa 3.2.1.2
Reescreva a expressão.
Etapa 3.3
Simplifique o lado direito.
Etapa 3.3.1
Simplifique cada termo.
Etapa 3.3.1.1
Multiplique por .
Etapa 3.3.1.2
Aplique a propriedade distributiva.
Etapa 3.3.1.3
Multiplique por .
Etapa 3.3.1.4
Mova para a esquerda de .
Etapa 3.3.1.5
Cancele o fator comum de .
Etapa 3.3.1.5.1
Mova o negativo de maior ordem em para o numerador.
Etapa 3.3.1.5.2
Fatore de .
Etapa 3.3.1.5.3
Cancele o fator comum.
Etapa 3.3.1.5.4
Reescreva a expressão.
Etapa 3.3.2
Subtraia de .
Etapa 4
Etapa 4.1
Reescreva a equação como .
Etapa 4.2
Subtraia dos dois lados da equação.
Etapa 4.3
Fatore usando o método AC.
Etapa 4.3.1
Considere a forma . Encontre um par de números inteiros cujo produto é e cuja soma é . Neste caso, cujo produto é e cuja soma é .
Etapa 4.3.2
Escreva a forma fatorada usando estes números inteiros.
Etapa 4.4
Se qualquer fator individual no lado esquerdo da equação for igual a , toda a expressão será igual a .
Etapa 4.5
Defina como igual a e resolva para .
Etapa 4.5.1
Defina como igual a .
Etapa 4.5.2
Some aos dois lados da equação.
Etapa 4.6
Defina como igual a e resolva para .
Etapa 4.6.1
Defina como igual a .
Etapa 4.6.2
Subtraia dos dois lados da equação.
Etapa 4.7
A solução final são todos os valores que tornam verdadeiro.
Etapa 5
Exclua as soluções que não tornam verdadeira.