Pré-álgebra Exemplos

Gráfico p(x)=(k-1)x^2-(5-2k)x+4k+5
Etapa 1
Mova todos os termos que contêm variáveis para o lado esquerdo da equação.
Toque para ver mais passagens...
Etapa 1.1
Subtraia dos dois lados da equação.
Etapa 1.2
Some aos dois lados da equação.
Etapa 1.3
Subtraia dos dois lados da equação.
Etapa 1.4
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.4.1
Aplique a propriedade distributiva.
Etapa 1.4.2
Multiplique por .
Etapa 1.4.3
Aplique a propriedade distributiva.
Etapa 1.4.4
Multiplique por .
Etapa 1.4.5
Aplique a propriedade distributiva.
Etapa 1.5
Mova .
Etapa 1.6
Mova .
Etapa 1.7
Mova .
Etapa 2
Esta é a forma de uma hipérbole. Use-a para determinar os valores usados para encontrar os vértices e as assíntotas da hipérbole.
Etapa 3
Associe os valores nesta hipérbole com os da forma padrão. A variável representa o deslocamento de x em relação à origem, representa o deslocamento de y em relação à origem, .
Etapa 4
O centro de uma hipérbole segue a forma de . Substitua os valores de e .
Etapa 5
Encontre , a distância do centro até um foco.
Toque para ver mais passagens...
Etapa 5.1
Encontre a distância do centro até um foco da hipérbole usando a seguinte fórmula.
Etapa 5.2
Substitua os valores de e na fórmula.
Etapa 5.3
Simplifique.
Toque para ver mais passagens...
Etapa 5.3.1
Um elevado a qualquer potência é um.
Etapa 5.3.2
Um elevado a qualquer potência é um.
Etapa 5.3.3
Some e .
Etapa 6
Encontre os vértices.
Toque para ver mais passagens...
Etapa 6.1
O primeiro vértice de uma hipérbole pode ser encontrado ao somar com .
Etapa 6.2
Substitua os valores conhecidos de , e na fórmula e simplifique.
Etapa 6.3
O segundo vértice de uma hipérbole pode ser encontrado ao subtrair de .
Etapa 6.4
Substitua os valores conhecidos de , e na fórmula e simplifique.
Etapa 6.5
Os vértices de uma hipérbole seguem a forma . As hipérboles têm dois vértices.
Etapa 7
Encontre o ponto imaginário.
Toque para ver mais passagens...
Etapa 7.1
O primeiro foco de uma hipérbole pode ser encontrado ao somar com .
Etapa 7.2
Substitua os valores conhecidos de , e na fórmula e simplifique.
Etapa 7.3
O segundo foco de uma hipérbole pode ser encontrado ao subtrair de .
Etapa 7.4
Substitua os valores conhecidos de , e na fórmula e simplifique.
Etapa 7.5
O ponto imaginário de uma hipérbole segue a forma de . As hipérboles têm dois pontos imaginários.
Etapa 8
Encontre o parâmetro focal.
Toque para ver mais passagens...
Etapa 8.1
Encontre o valor do parâmetro focal da hipérbole usando a seguinte fórmula.
Etapa 8.2
Substitua os valores de e na fórmula.
Etapa 8.3
Simplifique.
Toque para ver mais passagens...
Etapa 8.3.1
Um elevado a qualquer potência é um.
Etapa 8.3.2
Multiplique por .
Etapa 8.3.3
Combine e simplifique o denominador.
Toque para ver mais passagens...
Etapa 8.3.3.1
Multiplique por .
Etapa 8.3.3.2
Eleve à potência de .
Etapa 8.3.3.3
Eleve à potência de .
Etapa 8.3.3.4
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 8.3.3.5
Some e .
Etapa 8.3.3.6
Reescreva como .
Toque para ver mais passagens...
Etapa 8.3.3.6.1
Use para reescrever como .
Etapa 8.3.3.6.2
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 8.3.3.6.3
Combine e .
Etapa 8.3.3.6.4
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 8.3.3.6.4.1
Cancele o fator comum.
Etapa 8.3.3.6.4.2
Reescreva a expressão.
Etapa 8.3.3.6.5
Avalie o expoente.
Etapa 9
As assíntotas seguem a forma , porque esta hipérbole se abre para a esquerda e para a direita.
Etapa 10
Simplifique .
Toque para ver mais passagens...
Etapa 10.1
Some e .
Etapa 10.2
Multiplique por .
Etapa 11
Simplifique .
Toque para ver mais passagens...
Etapa 11.1
Some e .
Etapa 11.2
Reescreva como .
Etapa 12
Essa hipérbole tem duas assíntotas.
Etapa 13
Esses valores representam os valores importantes para representar graficamente e analisar uma hipérbole.
Centro:
Vértices:
Ponto imaginário:
Excentricidade:
Parâmetro focal:
Assíntotas: ,
Etapa 14