Pré-álgebra Exemplos

Gráfico y=(x+1/2)^2+1/4
Etapa 1
Simplifique .
Toque para ver mais passagens...
Etapa 1.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.1.1
Reescreva como .
Etapa 1.1.2
Expanda usando o método FOIL.
Toque para ver mais passagens...
Etapa 1.1.2.1
Aplique a propriedade distributiva.
Etapa 1.1.2.2
Aplique a propriedade distributiva.
Etapa 1.1.2.3
Aplique a propriedade distributiva.
Etapa 1.1.3
Simplifique e combine termos semelhantes.
Toque para ver mais passagens...
Etapa 1.1.3.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.1.3.1.1
Multiplique por .
Etapa 1.1.3.1.2
Combine e .
Etapa 1.1.3.1.3
Combine e .
Etapa 1.1.3.1.4
Multiplique .
Toque para ver mais passagens...
Etapa 1.1.3.1.4.1
Multiplique por .
Etapa 1.1.3.1.4.2
Multiplique por .
Etapa 1.1.3.2
Some e .
Etapa 1.1.4
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.1.4.1
Cancele o fator comum.
Etapa 1.1.4.2
Reescreva a expressão.
Etapa 1.2
Simplifique os termos.
Toque para ver mais passagens...
Etapa 1.2.1
Combine os numeradores em relação ao denominador comum.
Etapa 1.2.2
Some e .
Etapa 1.2.3
Cancele o fator comum de e .
Toque para ver mais passagens...
Etapa 1.2.3.1
Fatore de .
Etapa 1.2.3.2
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 1.2.3.2.1
Fatore de .
Etapa 1.2.3.2.2
Cancele o fator comum.
Etapa 1.2.3.2.3
Reescreva a expressão.
Etapa 2
Encontre as propriedades da parábola em questão.
Toque para ver mais passagens...
Etapa 2.1
Reescreva a equação na forma do vértice.
Toque para ver mais passagens...
Etapa 2.1.1
Complete o quadrado de .
Toque para ver mais passagens...
Etapa 2.1.1.1
Use a forma para encontrar os valores de , e .
Etapa 2.1.1.2
Considere a forma de vértice de uma parábola.
Etapa 2.1.1.3
Encontre o valor de usando a fórmula .
Toque para ver mais passagens...
Etapa 2.1.1.3.1
Substitua os valores de e na fórmula .
Etapa 2.1.1.3.2
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 2.1.1.3.2.1
Cancele o fator comum.
Etapa 2.1.1.3.2.2
Reescreva a expressão.
Etapa 2.1.1.4
Encontre o valor de usando a fórmula .
Toque para ver mais passagens...
Etapa 2.1.1.4.1
Substitua os valores de , e na fórmula .
Etapa 2.1.1.4.2
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 2.1.1.4.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 2.1.1.4.2.1.1
Um elevado a qualquer potência é um.
Etapa 2.1.1.4.2.1.2
Multiplique por .
Etapa 2.1.1.4.2.2
Para escrever como fração com um denominador comum, multiplique por .
Etapa 2.1.1.4.2.3
Escreva cada expressão com um denominador comum de , multiplicando cada um por um fator apropriado de .
Toque para ver mais passagens...
Etapa 2.1.1.4.2.3.1
Multiplique por .
Etapa 2.1.1.4.2.3.2
Multiplique por .
Etapa 2.1.1.4.2.4
Combine os numeradores em relação ao denominador comum.
Etapa 2.1.1.4.2.5
Subtraia de .
Etapa 2.1.1.5
Substitua os valores de , e na forma do vértice .
Etapa 2.1.2
Defina como igual ao novo lado direito.
Etapa 2.2
Use a forma de vértice, , para determinar os valores de , e .
Etapa 2.3
Como o valor de é positivo, a parábola abre para cima.
Abre para cima
Etapa 2.4
Encontre o vértice .
Etapa 2.5
Encontre , a distância do vértice até o foco.
Toque para ver mais passagens...
Etapa 2.5.1
Encontre a distância do vértice até um foco da parábola usando a seguinte fórmula.
Etapa 2.5.2
Substitua o valor de na fórmula.
Etapa 2.5.3
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 2.5.3.1
Cancele o fator comum.
Etapa 2.5.3.2
Reescreva a expressão.
Etapa 2.6
Encontre o foco.
Toque para ver mais passagens...
Etapa 2.6.1
O foco de uma parábola pode ser encontrado ao somar com a coordenada y , se a parábola abrir para cima ou para baixo.
Etapa 2.6.2
Substitua os valores conhecidos de , e na fórmula e simplifique.
Etapa 2.7
Para encontrar o eixo de simetria, encontre a reta que passa pelo vértice e o foco.
Etapa 2.8
Encontre a diretriz.
Toque para ver mais passagens...
Etapa 2.8.1
A diretriz de uma parábola é a reta horizontal encontrada ao subtrair da coordenada y do vértice se a parábola abrir para cima ou para baixo.
Etapa 2.8.2
Substitua os valores conhecidos de e na fórmula e simplifique.
Etapa 2.9
Use as propriedades da parábola para analisá-la e representá-la graficamente.
Direção: abre para cima
Vértice:
Foco:
Eixo de simetria:
Diretriz:
Direção: abre para cima
Vértice:
Foco:
Eixo de simetria:
Diretriz:
Etapa 3
Selecione alguns valores de e substitua-os na equação para encontrar os valores correspondentes de . Os valores de devem ser selecionados em torno do vértice.
Toque para ver mais passagens...
Etapa 3.1
Substitua a variável por na expressão.
Etapa 3.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 3.2.1
Remova os parênteses.
Etapa 3.2.2
Encontre o denominador comum.
Toque para ver mais passagens...
Etapa 3.2.2.1
Escreva como uma fração com denominador .
Etapa 3.2.2.2
Multiplique por .
Etapa 3.2.2.3
Multiplique por .
Etapa 3.2.2.4
Escreva como uma fração com denominador .
Etapa 3.2.2.5
Multiplique por .
Etapa 3.2.2.6
Multiplique por .
Etapa 3.2.3
Combine os numeradores em relação ao denominador comum.
Etapa 3.2.4
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 3.2.4.1
Eleve à potência de .
Etapa 3.2.4.2
Multiplique por .
Etapa 3.2.4.3
Multiplique por .
Etapa 3.2.5
Simplifique somando e subtraindo.
Toque para ver mais passagens...
Etapa 3.2.5.1
Subtraia de .
Etapa 3.2.5.2
Some e .
Etapa 3.2.6
A resposta final é .
Etapa 3.3
O valor em é .
Etapa 3.4
Substitua a variável por na expressão.
Etapa 3.5
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 3.5.1
Remova os parênteses.
Etapa 3.5.2
Encontre o denominador comum.
Toque para ver mais passagens...
Etapa 3.5.2.1
Escreva como uma fração com denominador .
Etapa 3.5.2.2
Multiplique por .
Etapa 3.5.2.3
Multiplique por .
Etapa 3.5.2.4
Escreva como uma fração com denominador .
Etapa 3.5.2.5
Multiplique por .
Etapa 3.5.2.6
Multiplique por .
Etapa 3.5.3
Combine os numeradores em relação ao denominador comum.
Etapa 3.5.4
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 3.5.4.1
Eleve à potência de .
Etapa 3.5.4.2
Multiplique por .
Etapa 3.5.4.3
Multiplique por .
Etapa 3.5.5
Simplifique somando e subtraindo.
Toque para ver mais passagens...
Etapa 3.5.5.1
Subtraia de .
Etapa 3.5.5.2
Some e .
Etapa 3.5.6
A resposta final é .
Etapa 3.6
O valor em é .
Etapa 3.7
Substitua a variável por na expressão.
Etapa 3.8
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 3.8.1
Remova os parênteses.
Etapa 3.8.2
Encontre o denominador comum.
Toque para ver mais passagens...
Etapa 3.8.2.1
Escreva como uma fração com denominador .
Etapa 3.8.2.2
Multiplique por .
Etapa 3.8.2.3
Multiplique por .
Etapa 3.8.2.4
Escreva como uma fração com denominador .
Etapa 3.8.2.5
Multiplique por .
Etapa 3.8.2.6
Multiplique por .
Etapa 3.8.3
Combine os numeradores em relação ao denominador comum.
Etapa 3.8.4
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 3.8.4.1
Um elevado a qualquer potência é um.
Etapa 3.8.4.2
Multiplique por .
Etapa 3.8.5
Simplifique somando os números.
Toque para ver mais passagens...
Etapa 3.8.5.1
Some e .
Etapa 3.8.5.2
Some e .
Etapa 3.8.6
A resposta final é .
Etapa 3.9
O valor em é .
Etapa 3.10
Substitua a variável por na expressão.
Etapa 3.11
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 3.11.1
Remova os parênteses.
Etapa 3.11.2
Encontre o denominador comum.
Toque para ver mais passagens...
Etapa 3.11.2.1
Escreva como uma fração com denominador .
Etapa 3.11.2.2
Multiplique por .
Etapa 3.11.2.3
Multiplique por .
Etapa 3.11.2.4
Escreva como uma fração com denominador .
Etapa 3.11.2.5
Multiplique por .
Etapa 3.11.2.6
Multiplique por .
Etapa 3.11.3
Combine os numeradores em relação ao denominador comum.
Etapa 3.11.4
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 3.11.4.1
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 3.11.4.1.1
Multiplique por .
Toque para ver mais passagens...
Etapa 3.11.4.1.1.1
Eleve à potência de .
Etapa 3.11.4.1.1.2
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 3.11.4.1.2
Some e .
Etapa 3.11.4.2
Eleve à potência de .
Etapa 3.11.4.3
Multiplique por .
Etapa 3.11.5
Simplifique somando os números.
Toque para ver mais passagens...
Etapa 3.11.5.1
Some e .
Etapa 3.11.5.2
Some e .
Etapa 3.11.6
A resposta final é .
Etapa 3.12
O valor em é .
Etapa 3.13
Crie um gráfico da parábola usando suas propriedades e os pontos selecionados.
Etapa 4
Crie um gráfico da parábola usando suas propriedades e os pontos selecionados.
Direção: abre para cima
Vértice:
Foco:
Eixo de simetria:
Diretriz:
Etapa 5