Pré-álgebra Exemplos

Löse nach x auf 2x^3+5x^2+3x-3=0
Etapa 1
Fatore usando o teste das raízes racionais.
Toque para ver mais passagens...
Etapa 1.1
Se uma função polinomial tiver coeficientes inteiros, então todo zero racional terá a forma , em que é um fator da constante e é um fator do coeficiente de maior ordem.
Etapa 1.2
Encontre todas as combinações de . Essas são as raízes possíveis da função polinomial.
Etapa 1.3
Substitua e simplifique a expressão. Nesse caso, a expressão é igual a . Portanto, é uma raiz do polinômio.
Toque para ver mais passagens...
Etapa 1.3.1
Substitua no polinômio.
Etapa 1.3.2
Eleve à potência de .
Etapa 1.3.3
Multiplique por .
Etapa 1.3.4
Eleve à potência de .
Etapa 1.3.5
Multiplique por .
Etapa 1.3.6
Some e .
Etapa 1.3.7
Multiplique por .
Etapa 1.3.8
Some e .
Etapa 1.3.9
Subtraia de .
Etapa 1.4
Como é uma raiz conhecida, divida o polinômio por para encontrar o polinômio do quociente. Então, esse polinômio pode ser usado para encontrar as raízes restantes.
Etapa 1.5
Divida por .
Toque para ver mais passagens...
Etapa 1.5.1
Estabeleça os polinômios a serem divididos. Se não houver um termo para cada expoente, insira um com valor de .
-++-
Etapa 1.5.2
Divida o termo de ordem mais alta no dividendo pelo termo de ordem mais alta no divisor .
-++-
Etapa 1.5.3
Multiplique o novo termo do quociente pelo divisor.
-++-
+-
Etapa 1.5.4
A expressão precisa ser subtraída do dividendo. Portanto, altere todos os sinais em .
-++-
-+
Etapa 1.5.5
Depois de alterar os sinais, some o último dividendo do polinômio multiplicado para encontrar o novo dividendo.
-++-
-+
+
Etapa 1.5.6
Tire os próximos termos do dividendo original e os coloque no dividendo atual.
-++-
-+
++
Etapa 1.5.7
Divida o termo de ordem mais alta no dividendo pelo termo de ordem mais alta no divisor .
+
-++-
-+
++
Etapa 1.5.8
Multiplique o novo termo do quociente pelo divisor.
+
-++-
-+
++
+-
Etapa 1.5.9
A expressão precisa ser subtraída do dividendo. Portanto, altere todos os sinais em .
+
-++-
-+
++
-+
Etapa 1.5.10
Depois de alterar os sinais, some o último dividendo do polinômio multiplicado para encontrar o novo dividendo.
+
-++-
-+
++
-+
+
Etapa 1.5.11
Tire os próximos termos do dividendo original e os coloque no dividendo atual.
+
-++-
-+
++
-+
+-
Etapa 1.5.12
Divida o termo de ordem mais alta no dividendo pelo termo de ordem mais alta no divisor .
++
-++-
-+
++
-+
+-
Etapa 1.5.13
Multiplique o novo termo do quociente pelo divisor.
++
-++-
-+
++
-+
+-
+-
Etapa 1.5.14
A expressão precisa ser subtraída do dividendo. Portanto, altere todos os sinais em .
++
-++-
-+
++
-+
+-
-+
Etapa 1.5.15
Depois de alterar os sinais, some o último dividendo do polinômio multiplicado para encontrar o novo dividendo.
++
-++-
-+
++
-+
+-
-+
Etapa 1.5.16
Já que o resto é , a resposta final é o quociente.
Etapa 1.6
Escreva como um conjunto de fatores.
Etapa 2
Se qualquer fator individual no lado esquerdo da equação for igual a , toda a expressão será igual a .
Etapa 3
Defina como igual a e resolva para .
Toque para ver mais passagens...
Etapa 3.1
Defina como igual a .
Etapa 3.2
Resolva para .
Toque para ver mais passagens...
Etapa 3.2.1
Some aos dois lados da equação.
Etapa 3.2.2
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 3.2.2.1
Divida cada termo em por .
Etapa 3.2.2.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 3.2.2.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 3.2.2.2.1.1
Cancele o fator comum.
Etapa 3.2.2.2.1.2
Divida por .
Etapa 4
Defina como igual a e resolva para .
Toque para ver mais passagens...
Etapa 4.1
Defina como igual a .
Etapa 4.2
Resolva para .
Toque para ver mais passagens...
Etapa 4.2.1
Use a fórmula quadrática para encontrar as soluções.
Etapa 4.2.2
Substitua os valores , e na fórmula quadrática e resolva .
Etapa 4.2.3
Simplifique.
Toque para ver mais passagens...
Etapa 4.2.3.1
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 4.2.3.1.1
Eleve à potência de .
Etapa 4.2.3.1.2
Multiplique .
Toque para ver mais passagens...
Etapa 4.2.3.1.2.1
Multiplique por .
Etapa 4.2.3.1.2.2
Multiplique por .
Etapa 4.2.3.1.3
Subtraia de .
Etapa 4.2.3.1.4
Reescreva como .
Etapa 4.2.3.1.5
Reescreva como .
Etapa 4.2.3.1.6
Reescreva como .
Etapa 4.2.3.2
Multiplique por .
Etapa 4.2.4
A resposta final é a combinação das duas soluções.
Etapa 5
A solução final são todos os valores que tornam verdadeiro.