Pré-álgebra Exemplos

Löse nach x auf 60/x-60/(x-9)=2/y
Etapa 1
Encontre o MMC dos termos na equação.
Toque para ver mais passagens...
Etapa 1.1
Encontrar o MMC de uma lista de valores é o mesmo que encontrar o MMC dos denominadores desses valores.
Etapa 1.2
Since contains both numbers and variables, there are four steps to find the LCM. Find LCM for the numeric, variable, and compound variable parts. Then, multiply them all together.
As etapas para encontrar o MMC de são:
1. Encontre o MMC da parte numérica .
2. Encontre o MMC da parte variável .
3. Encontre o MMC da parte variável composta .
4. Multiplique todos os MMCs juntos.
Etapa 1.3
O MMC é o menor número positivo pelo qual todos os números se dividem uniformemente.
1. Liste os fatores primos de cada número.
2. Multiplique cada fator pelo maior número de vezes em que ele ocorre em cada número.
Etapa 1.4
O número não é primo porque tem apenas um fator positivo, que é ele mesmo.
Não é primo
Etapa 1.5
O MMC de é o resultado da multiplicação de todos os fatores primos pelo maior número de vezes que eles ocorrem em qualquer um dos números.
Etapa 1.6
O fator de é o próprio .
ocorre vez.
Etapa 1.7
O fator de é o próprio .
ocorre vez.
Etapa 1.8
O MMC de é o resultado da multiplicação de todos os fatores primos pelo maior número de vezes que eles ocorrem em qualquer um dos termos.
Etapa 1.9
Multiplique por .
Etapa 1.10
O fator de é o próprio .
ocorre vez.
Etapa 1.11
O MMC de é o resultado da multiplicação de todos os fatores pelo maior número de vezes que eles ocorrem em qualquer um dos termos.
Etapa 1.12
O mínimo múltiplo comum de alguns números é o menor número do qual os números são fatores.
Etapa 2
Multiplique cada termo em por para eliminar as frações.
Toque para ver mais passagens...
Etapa 2.1
Multiplique cada termo em por .
Etapa 2.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 2.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 2.2.1.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 2.2.1.1.1
Fatore de .
Etapa 2.2.1.1.2
Cancele o fator comum.
Etapa 2.2.1.1.3
Reescreva a expressão.
Etapa 2.2.1.2
Aplique a propriedade distributiva.
Etapa 2.2.1.3
Mova para a esquerda de .
Etapa 2.2.1.4
Aplique a propriedade distributiva.
Etapa 2.2.1.5
Multiplique por .
Etapa 2.2.1.6
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 2.2.1.6.1
Mova o negativo de maior ordem em para o numerador.
Etapa 2.2.1.6.2
Fatore de .
Etapa 2.2.1.6.3
Cancele o fator comum.
Etapa 2.2.1.6.4
Reescreva a expressão.
Etapa 2.2.2
Combine os termos opostos em .
Toque para ver mais passagens...
Etapa 2.2.2.1
Reorganize os fatores nos termos e .
Etapa 2.2.2.2
Subtraia de .
Etapa 2.2.2.3
Some e .
Etapa 2.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 2.3.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 2.3.1.1
Fatore de .
Etapa 2.3.1.2
Cancele o fator comum.
Etapa 2.3.1.3
Reescreva a expressão.
Etapa 2.3.2
Aplique a propriedade distributiva.
Etapa 2.3.3
Simplifique a expressão.
Toque para ver mais passagens...
Etapa 2.3.3.1
Multiplique por .
Etapa 2.3.3.2
Mova para a esquerda de .
Etapa 2.3.4
Aplique a propriedade distributiva.
Etapa 2.3.5
Multiplique por .
Etapa 3
Resolva a equação.
Toque para ver mais passagens...
Etapa 3.1
Reescreva a equação como .
Etapa 3.2
Some aos dois lados da equação.
Etapa 3.3
Use a fórmula quadrática para encontrar as soluções.
Etapa 3.4
Substitua os valores , e na fórmula quadrática e resolva .
Etapa 3.5
Simplifique.
Toque para ver mais passagens...
Etapa 3.5.1
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 3.5.1.1
Eleve à potência de .
Etapa 3.5.1.2
Multiplique .
Toque para ver mais passagens...
Etapa 3.5.1.2.1
Multiplique por .
Etapa 3.5.1.2.2
Multiplique por .
Etapa 3.5.1.3
Fatore de .
Toque para ver mais passagens...
Etapa 3.5.1.3.1
Fatore de .
Etapa 3.5.1.3.2
Fatore de .
Etapa 3.5.1.3.3
Fatore de .
Etapa 3.5.1.4
Reescreva como .
Toque para ver mais passagens...
Etapa 3.5.1.4.1
Fatore de .
Etapa 3.5.1.4.2
Reescreva como .
Etapa 3.5.1.4.3
Adicione parênteses.
Etapa 3.5.1.5
Elimine os termos abaixo do radical.
Etapa 3.5.2
Multiplique por .
Etapa 3.5.3
Simplifique .
Etapa 3.6
A resposta final é a combinação das duas soluções.