Insira um problema...
Pré-álgebra Exemplos
Etapa 1
Reescreva a equação como .
Etapa 2
Eleve à potência de .
Etapa 3
Etapa 3.1
Encontrar o MMC de uma lista de valores é o mesmo que encontrar o MMC dos denominadores desses valores.
Etapa 3.2
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .
Etapa 3.3
O MMC é o menor número positivo pelo qual todos os números se dividem uniformemente.
1. Liste os fatores primos de cada número.
2. Multiplique cada fator pelo maior número de vezes em que ele ocorre em cada número.
Etapa 3.4
tem fatores de e .
Etapa 3.5
Os fatores primos de são .
Etapa 3.5.1
tem fatores de e .
Etapa 3.5.2
tem fatores de e .
Etapa 3.5.3
tem fatores de e .
Etapa 3.5.4
tem fatores de e .
Etapa 3.5.5
tem fatores de e .
Etapa 3.6
Multiplique .
Etapa 3.6.1
Multiplique por .
Etapa 3.6.2
Multiplique por .
Etapa 3.6.3
Multiplique por .
Etapa 3.6.4
Multiplique por .
Etapa 3.6.5
Multiplique por .
Etapa 3.7
O fator de é o próprio .
ocorre vez.
Etapa 3.8
Os fatores para são , que é multiplicado um pelo outro vezes.
ocorre vezes.
Etapa 3.9
O MMC de é o resultado da multiplicação de todos os fatores primos pelo maior número de vezes que eles ocorrem em qualquer um dos termos.
Etapa 3.10
Multiplique por .
Etapa 3.11
O MMC de é a parte numérica multiplicada pela parte variável.
Etapa 4
Etapa 4.1
Multiplique cada termo em por .
Etapa 4.2
Simplifique o lado esquerdo.
Etapa 4.2.1
Simplifique cada termo.
Etapa 4.2.1.1
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 4.2.1.2
Cancele o fator comum de .
Etapa 4.2.1.2.1
Fatore de .
Etapa 4.2.1.2.2
Fatore de .
Etapa 4.2.1.2.3
Cancele o fator comum.
Etapa 4.2.1.2.4
Reescreva a expressão.
Etapa 4.2.1.3
Combine e .
Etapa 4.2.1.4
Cancele o fator comum de .
Etapa 4.2.1.4.1
Fatore de .
Etapa 4.2.1.4.2
Cancele o fator comum.
Etapa 4.2.1.4.3
Reescreva a expressão.
Etapa 4.2.1.5
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 4.2.1.6
Cancele o fator comum de .
Etapa 4.2.1.6.1
Fatore de .
Etapa 4.2.1.6.2
Fatore de .
Etapa 4.2.1.6.3
Cancele o fator comum.
Etapa 4.2.1.6.4
Reescreva a expressão.
Etapa 4.2.1.7
Combine e .
Etapa 4.2.1.8
Multiplique por .
Etapa 4.2.1.9
Cancele o fator comum de .
Etapa 4.2.1.9.1
Cancele o fator comum.
Etapa 4.2.1.9.2
Reescreva a expressão.
Etapa 4.3
Simplifique o lado direito.
Etapa 4.3.1
Cancele o fator comum de .
Etapa 4.3.1.1
Fatore de .
Etapa 4.3.1.2
Cancele o fator comum.
Etapa 4.3.1.3
Reescreva a expressão.
Etapa 5
Etapa 5.1
Subtraia dos dois lados da equação.
Etapa 5.2
Use a fórmula quadrática para encontrar as soluções.
Etapa 5.3
Substitua os valores , e na fórmula quadrática e resolva .
Etapa 5.4
Simplifique.
Etapa 5.4.1
Simplifique o numerador.
Etapa 5.4.1.1
Eleve à potência de .
Etapa 5.4.1.2
Multiplique .
Etapa 5.4.1.2.1
Multiplique por .
Etapa 5.4.1.2.2
Multiplique por .
Etapa 5.4.1.3
Some e .
Etapa 5.4.1.4
Reescreva como .
Etapa 5.4.1.4.1
Fatore de .
Etapa 5.4.1.4.2
Reescreva como .
Etapa 5.4.1.5
Elimine os termos abaixo do radical.
Etapa 5.4.2
Multiplique por .
Etapa 5.4.3
Simplifique .
Etapa 5.5
A resposta final é a combinação das duas soluções.
Etapa 6
O resultado pode ser mostrado de várias formas.
Forma exata:
Forma decimal: