2501 |
Simplifique a Matriz |
[[1,-5,11],[0,0,0]] |
|
2502 |
Simplifique a Matriz |
[[1,5,-5],[2,6,3]]*[[4x,4x],[2x,0]] |
|
2503 |
Simplifique a Matriz |
[[1,8,4,9.7],[3,5,2,10.7],[6,5,3,11.9],[1,4,5,7.6],[5,6,4,10.4]]+[[9,5,11,18.2],[4,1,11,14.9],[11,7,15,19.4],[2,8,23,12.5],[16,1,5,17.1]]+[[8,6,18,17.9],[7,1,14,16.5],[6,3,21,18.2],[1,7,17,10.8],[8,2,18,17.1]]+[[7,5,10,15],[0,0,0,0],[6,5,13,15.9],[1,3,12,10.9],[8,4,5,13.9]]+[[4,4,9,12.4],[3,1,9,12],[9,5,9,13.2],[1,4,14,8.9],[12,2,4,13.7]] |
|
2504 |
Simplifique a Matriz |
[[1,9],[3,20]] |
|
2505 |
Simplifique a Matriz |
[[1+i,1-i],[i,1]]*[[1-i,1+i],[-i,2]] |
|
2506 |
Simplifique a Matriz |
[[11,3,20,18.5],[14,2,15,23.5],[6,3,13,16.2],[0,2,31,13.3],[5,4,10,15.5]]+[[8,1,10,15],[7,2,10,16],[5,2,7,12],[1,2,19,11],[4,2,16,13]]+[[4,6,11,13.3],[12,6,4,17.1],[0,0,0,0],[0,8,10,8.4],[2,3,7,12.8]]+[[1,5,5,12.4],[8,6,3,17.4],[1,8,5,11.7],[0,5,8,9.2],[1,5,3,9.5]]+[[8,8,12,15],[4,7,15,12.9],[5,8,10,10.8],[0,7,18,10],[8,7,8,12.6]] |
|
2507 |
Simplifique a Matriz |
[[18,40],[50,82],[8,64],[32,50]] |
|
2508 |
Simplifique a Matriz |
[[-1-i,-1],[2,1-i]] |
|
2509 |
Simplifique a Matriz |
[[2,0],[7,-1]][[6,-1,3],[5,0,-2]]+[[7,0],[-1,3]][[6,-1,3],[5,0,-2]] |
|
2510 |
Simplifique a Matriz |
[[-2,1,-2],[1,-1,2],[2,-1,1]][[9],[6],[-9]] |
|
2511 |
Simplifique a Matriz |
[[2,1],[1,-1]]+[[6,-4],[6,4]] |
|
2512 |
Simplifique a Matriz |
[[2,3,4,16,12],[3,4,5,29,20],[4,5,6,x,30],[5,6,7,67,42],[6,7,8,92,56]] |
|
2513 |
Simplifique a Matriz |
[[-2,3],[2,-1]][[10,-6],[-9,7]] |
|
2514 |
Simplifique a Matriz |
[[2,3],[4,5]][[2,3],[6,5]] |
|
2515 |
Simplifique a Matriz |
[[-2,6],[3,-9]]+[[7,1,5],[-3,0,4]] |
|
2516 |
Simplifique a Matriz |
([[2,-8,-10,-14],[-2,3,1,0],[7,0,-1,-3]]*1)/2a |
|
2517 |
Simplifique a Matriz |
[[2.04a,-1b,0d,0g],[-1a,2.04b,-1d,0g],[0a,-1b,2.04d,-1g],[0a,0b,-1d,2.04g]]-[[40.8],[0.8],[0.8],[200.8]] |
|
2518 |
Simplifique a Matriz |
[[2.5,0,18,14,8,3.5,10,9]] |
|
2519 |
Simplifique a Matriz |
[[2],[9]]+[[5],[10]] |
|
2520 |
Simplifique a Matriz |
[[20,5,19,8,20],[9,0,0,15,0],[13,9,19,18,0]][[1,-2,2],[-1,1,3],[1,-1,4]] |
|
2521 |
Simplifique a Matriz |
[[23,-5],[65,-7]] |
|
2522 |
Simplifique a Matriz |
[[3,-1,4],[5,-3,4],[0,4,-2]][[5,1,5],[4,4,2],[3,-1,4]] |
|
2523 |
Simplifique a Matriz |
[[3,2,-1,-15],[5,3,2,0],[3,2,3,11],[-6,-4,2,40]] |
|
2524 |
Simplifique a Matriz |
[[3,-5,1],[0,-2,3],[0,5,-1]][[1,0,3],[2,5,1],[3,-5,3]] |
|
2525 |
Simplifique a Matriz |
[[3,6,-4,16],[2,-1,-9,-18],[-3,-7,8,-27]] |
|
2526 |
Simplifique a Matriz |
[[35,70,175,140],[40,40,80,80],[40,40,90,70]][[2800],[1400],[1500]] |
|
2527 |
Simplifique a Matriz |
[[-3x,2y,4z],[x,6y,-2z],[4x,4y,-6z]]=-22 , 16 , 38 |
, , |
2528 |
Simplifique a Matriz |
[[3x,4y,15],[4x,3y,12]] |
|
2529 |
Simplifique a Matriz |
[[3x,-5y,8],[2x,5y,22]] |
|
2530 |
Simplifique a Matriz |
[[3x,y,7],[2x,3y,12]] |
|
2531 |
Simplifique a Matriz |
[[-4,2,3]]+[[-2],[0],[-1]] |
|
2532 |
Simplifique a Matriz |
[[-4,2k+30],[-12,2k-10]][[-4,24],[-k-15,2k-10]] |
|
2533 |
Simplifique a Matriz |
[[4,4],[-2,3]][[1,-2],[4,20],[3,4]] |
|
2534 |
Encontre o Determinante |
[[-9/7,1/7,-3/7],[40/21,-2/7,11/21],[-47/7,6/7,-18/7]] |
|
2535 |
Encontre o Determinante |
(2)[[1,340,2,2],[1,255,3,0],[2,435,1,4],[1,225,1,1]] |
|
2536 |
Encontre o Determinante |
(-2)[[340,2,2],[435,1,4],[225,1,1]] |
|
2537 |
Encontre o Determinante |
(-2xz)(-2yz)[[-2x^2,-2xy,-2xz],[-2xy,1-2y^2,-2yz],[-2xz,-2yz,1-2z^2]] |
|
2538 |
Encontre o Determinante |
(3)[[260,1,1],[255,3,0],[435,1,4]] |
|
2539 |
Encontre o Determinante |
(3*2)[[1,4,4],[0,-2,8],[-6,3,5]] |
|
2540 |
Encontre o Determinante |
[[5,0,6,4],[5,2,1,0],[7,6,4,7],[5,0,6,4]] |
|
2541 |
Encontre o Determinante |
|1|[[1,-1,-1,-1],[-1,-1,1,1],[1,1,-1,1],[1,1,1,1]] |
|
2542 |
Encontre o Determinante |
[[10,12],[-8,-10]]^15 |
|
2543 |
Encontre o Determinante |
A=[[24,3],[-2,-16]] |
|
2544 |
Encontre o Determinante |
A=[[3 raiz quadrada de 3,-3],[3,3 raiz quadrada de 3]] |
|
2545 |
Encontre o Determinante |
A=[[9,-6],[4,7]] |
|
2546 |
Encontre o Determinante |
A=[[x,3,x^2],[-3,5x,0],[4,x^3,1]] |
|
2547 |
Encontre o Determinante |
ay-pr=1[[a,p],[r,y]]^-1 |
|
2548 |
Encontre o Determinante |
det [[2,1],[1,2]]^-1 |
det |
2549 |
Encontre o Determinante |
det [[-1,6],[-2,6]] |
det |
2550 |
Encontre o Determinante |
det [[3,2,1],[3,4,5],[3,7,8]] |
det |
2551 |
Encontre o Determinante |
det [[5,3,5],[1,7,8],[9,4,2]] |
det |
2552 |
Encontre o Determinante |
det [[-5,x],[6,1]] |
det |
2553 |
Encontre o Determinante |
det [[x,0],[7,4]]=16 |
det |
2554 |
Encontre o Determinante |
[[0.25,1,1],[4,3,-5],[-1,-3,-4]] |
|
2555 |
Encontre o Determinante |
[[-0.5084,-0.1587,0.6857],[-0.8474,-0.7936,3.4285],[0.1525,-0.5873,-0.8571]] |
|
2556 |
Encontre o Determinante |
[[-3/17,5/17],[4/17,-1/17]] |
|
2557 |
Encontre o Determinante |
[[-4/7,2/7,1/7,1/7],[-9/7,1/7,-3/7,1/14],[40/21,-2/7,11/21,1/42],[-47/7,6/7,-18/7,-1/14]] |
|
2558 |
Encontre o Determinante |
[[a^11,a^12,a^13],[a^21,a^22,a^23],[a^31,a^32,a^33]] |
|
2559 |
Encontre o Determinante |
[[a^2,b^2,c^2],[bc,ac,ab],[a-b-c,b-a-c,c-a-b]] |
|
2560 |
Encontre o Determinante |
[[a^2,a,1],[b^2,b,1],[c^2,c,1]] |
|
2561 |
Encontre o Determinante |
[[a^4,b^4,c^4],[a^2,b^2,c^2],[1,1,1]] |
|
2562 |
Encontre o Determinante |
[[e^(3x),e^(2x)],[3e^(3x),2e^(2x)]] |
|
2563 |
Encontre o Determinante |
[[e^(-3x)cos(2x),e^(-3x)sin(2x)],[-3e^(-3x)cos(2x)-2e^(-3x)sin(2x),-3e^(-3x)sin(2x)+2e^(-3x)cos(2x)]] |
|
2564 |
Encontre o Determinante |
[[e^x,e^(2x),e^(3x)],[e^x,2e^(2x),3e^(3x)],[e^x,4e^(2x),9e^3]] |
|
2565 |
Encontre o Determinante |
[[e^x,cos(x),sin(x)],[e^x,-sin(x),cos(x)],[e^x,-cos(x),-sin(x)]] |
|
2566 |
Encontre o Determinante |
[[ raiz quadrada de 2,2 raiz quadrada de 3],[ raiz quadrada de 6,5]] |
|
2567 |
Encontre o Determinante |
[[0,0,-16],[4,4,16],[0,0,4]] |
|
2568 |
Encontre o Determinante |
[[0,0],[1,0]] |
|
2569 |
Encontre o Determinante |
[[0,-1,4],[3,-4,1],[1,-2,3]] |
|
2570 |
Simplifique a Matriz |
[[1,-3,4,5,3],[0,1,5,0,12],[0,0,1,-1,2],[1,-3,0,0,-5]] |
|
2571 |
Simplifique a Matriz |
[[1,9,-5,-9],[6,6,7,3],[-8,7,7,3]]-6a+b |
|
2572 |
Simplifique a Matriz |
[[1,a+1,a^2],[1-a,1-2a,0],[1,1+a,a]] |
|
2573 |
Simplifique a Matriz |
[[12,16,8],[20,12,28],[32,28,36]][[220],[176],[264]] |
|
2574 |
Simplifique a Matriz |
[[2,0,5],[3,-5,1],[4,-7,6]][[9,7,14]] |
|
2575 |
Simplifique a Matriz |
[[2,-3,5],[0,1,3],[7,5,4]][[2,-3,2],[6,3,4],[0,4,8]] |
|
2576 |
Simplifique a Matriz |
[[-2,3,5],[2,-1,6],[4,-7,-3]]*[[7,-1,4],[-3,5,-2],[5,9,2]] |
|
2577 |
Simplifique a Matriz |
[[2,-31,1],[4,7,-1],[1,2,-2]][[-15,0],[21,10],[13,1]] |
|
2578 |
Simplifique a Matriz |
[[2,-5],[1,4]]*[[6,2,3],[-4,0,7]] |
|
2579 |
Simplifique a Matriz |
[[2,-5],[1,4]][[6,2,3],[-4,0,7]] |
|
2580 |
Simplifique a Matriz |
[[200,300,500,250],[100,150,200,300]] |
|
2581 |
Simplifique a Matriz |
[[200,350,450],[58,39,19]] |
|
2582 |
Simplifique a Matriz |
[[3,-12,-6],[2,-8,-4],[4,-16,-8]] |
|
2583 |
Simplifique a Matriz |
[[3,5,2,0],[4,7,5,0],[1,1,-4,0],[2,9,6,0]] |
|
2584 |
Simplifique a Matriz |
[[-4,3,-6],[0,2,7],[10,15,-3]]-2[[-1,2,4],[-2,0,3],[5,-6,1]] |
|
2585 |
Simplifique a Matriz |
[[-6,4,3],[1,5,-7]] |
|
2586 |
Simplifique a Matriz |
[[m,n],[x,y]][[3,-1],[3,4]] |
|
2587 |
Simplifique a Matriz |
[[x,y,z,6],[x,-y,z,7]] |
|
2588 |
Encontre o Determinante |
[[1,-2,3,-5,7],[2,0,-1,-5,6],[4,7,3,-9,4],[3,1,-2,-2,3],[-5,-1,3,7,-9]] |
|
2589 |
Encontre o Determinante |
[[1,2,3],[4,5,6],[5,7,9]] |
|
2590 |
Encontre o Determinante |
[[1,-2,1],[5,-15,0],[4,-2,6]] |
|
2591 |
Encontre o Determinante |
[[1,2,2,-4,-3],[4,9,0,-2,3],[0,0,1,0,-2],[0,0,2,1,3],[0,0,0,4,-4]] |
|
2592 |
Encontre o Determinante |
[[1,1,1],[2,-1,3],[4,5,1]] |
|
2593 |
Encontre o Determinante |
[[1,0,4],[4,1,9],[k,7,-4]] |
|
2594 |
Encontre o Determinante |
[[1,1,0],[0,1,0],[0,0,0]] |
|
2595 |
Encontre o Determinante |
[[1,1,1],[0,0,1],[0,1,0]] |
|
2596 |
Encontre as Variáveis |
[[-12,-w^2],[2f,3]]=[[2k,-81],[-14,3]] |
|
2597 |
Encontre o Determinante |
[[0,2,2],[-1,6,-2],[6,2.2,8]] |
|
2598 |
Encontre o Determinante |
[[0,4,6],[3,5,4],[6,8,6]] |
|
2599 |
Encontre o Determinante |
[[0,cos(x),sin(x)],[0,-2cos(x)-sin(x),cos(x)-2sin(x)],[0,3cos(x)+4sin(x),-4cos(x)+3sin(x)]] |
|
2600 |
Encontre o Determinante |
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]] |
|