Insira um problema...
Álgebra linear Exemplos
Etapa 1
Etapa 1.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is and the second matrix is .
Etapa 1.2
Multiplique cada linha na primeira matriz por cada coluna na segunda matriz.
Etapa 1.3
Simplifique cada elemento da matriz multiplicando todas as expressões.
Etapa 2
Etapa 2.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Etapa 2.1.1
Consider the corresponding sign chart.
Etapa 2.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Etapa 2.1.3
The minor for is the determinant with row and column deleted.
Etapa 2.1.4
Multiply element by its cofactor.
Etapa 2.1.5
The minor for is the determinant with row and column deleted.
Etapa 2.1.6
Multiply element by its cofactor.
Etapa 2.1.7
The minor for is the determinant with row and column deleted.
Etapa 2.1.8
Multiply element by its cofactor.
Etapa 2.1.9
Add the terms together.
Etapa 2.2
Multiplique por .
Etapa 2.3
Multiplique por .
Etapa 2.4
Avalie .
Etapa 2.4.1
O determinante de uma matriz pode ser encontrado ao usar a fórmula .
Etapa 2.4.2
Simplifique o determinante.
Etapa 2.4.2.1
Simplifique cada termo.
Etapa 2.4.2.1.1
Multiplique por .
Etapa 2.4.2.1.2
Multiplique por .
Etapa 2.4.2.2
Some e .
Etapa 2.5
Simplifique o determinante.
Etapa 2.5.1
Multiplique por .
Etapa 2.5.2
Some e .
Etapa 2.5.3
Some e .
Etapa 3
Since the determinant is non-zero, the inverse exists.
Etapa 4
Set up a matrix where the left half is the original matrix and the right half is its identity matrix.
Etapa 5
The right half of the reduced row echelon form is the inverse.