Álgebra linear Exemplos

Encontre o Domínio logaritmo de (2x+2)^2 = logaritmo de 1+(12x)/25+2
Etapa 1
Defina o argumento em como maior do que para encontrar onde a expressão está definida.
Etapa 2
Resolva .
Toque para ver mais passagens...
Etapa 2.1
Pegue a raiz especificada de ambos os lados da desigualdade para eliminar o expoente no lado esquerdo.
Etapa 2.2
Simplifique a equação.
Toque para ver mais passagens...
Etapa 2.2.1
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 2.2.1.1
Elimine os termos abaixo do radical.
Etapa 2.2.2
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 2.2.2.1
Simplifique .
Toque para ver mais passagens...
Etapa 2.2.2.1.1
Reescreva como .
Etapa 2.2.2.1.2
Elimine os termos abaixo do radical.
Etapa 2.2.2.1.3
O valor absoluto é a distância entre um número e zero. A distância entre e é .
Etapa 2.3
Escreva em partes.
Toque para ver mais passagens...
Etapa 2.3.1
Para encontrar o intervalo da primeira parte, identifique onde o interior do valor absoluto é não negativo.
Etapa 2.3.2
Resolva a desigualdade.
Toque para ver mais passagens...
Etapa 2.3.2.1
Subtraia dos dois lados da desigualdade.
Etapa 2.3.2.2
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 2.3.2.2.1
Divida cada termo em por .
Etapa 2.3.2.2.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 2.3.2.2.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 2.3.2.2.2.1.1
Cancele o fator comum.
Etapa 2.3.2.2.2.1.2
Divida por .
Etapa 2.3.2.2.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 2.3.2.2.3.1
Divida por .
Etapa 2.3.3
Na parte em que é não negativo, remova o valor absoluto.
Etapa 2.3.4
Para encontrar o intervalo da segunda parte, identifique onde o interior do valor absoluto é negativo.
Etapa 2.3.5
Resolva a desigualdade.
Toque para ver mais passagens...
Etapa 2.3.5.1
Subtraia dos dois lados da desigualdade.
Etapa 2.3.5.2
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 2.3.5.2.1
Divida cada termo em por .
Etapa 2.3.5.2.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 2.3.5.2.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 2.3.5.2.2.1.1
Cancele o fator comum.
Etapa 2.3.5.2.2.1.2
Divida por .
Etapa 2.3.5.2.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 2.3.5.2.3.1
Divida por .
Etapa 2.3.6
Na parte em que é negativo, remova o valor absoluto e multiplique por .
Etapa 2.3.7
Escreva em partes.
Etapa 2.3.8
Simplifique .
Toque para ver mais passagens...
Etapa 2.3.8.1
Aplique a propriedade distributiva.
Etapa 2.3.8.2
Multiplique por .
Etapa 2.3.8.3
Multiplique por .
Etapa 2.4
Resolva para .
Toque para ver mais passagens...
Etapa 2.4.1
Subtraia dos dois lados da desigualdade.
Etapa 2.4.2
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 2.4.2.1
Divida cada termo em por .
Etapa 2.4.2.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 2.4.2.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 2.4.2.2.1.1
Cancele o fator comum.
Etapa 2.4.2.2.1.2
Divida por .
Etapa 2.4.2.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 2.4.2.3.1
Divida por .
Etapa 2.5
Resolva para .
Toque para ver mais passagens...
Etapa 2.5.1
Some aos dois lados da desigualdade.
Etapa 2.5.2
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 2.5.2.1
Divida cada termo em por . Ao multiplicar ou dividir os dois lados de uma desigualdade por um valor negativo, inverta a direção do sinal de desigualdade.
Etapa 2.5.2.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 2.5.2.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 2.5.2.2.1.1
Cancele o fator comum.
Etapa 2.5.2.2.1.2
Divida por .
Etapa 2.5.2.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 2.5.2.3.1
Divida por .
Etapa 2.6
Encontre a união das soluções.
ou
ou
Etapa 3
O domínio consiste em todos os valores de que tornam a expressão definida.
Notação de intervalo:
Notação de construtor de conjuntos:
Etapa 4