Insira um problema...
Álgebra linear Exemplos
Etapa 1
Etapa 1.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Etapa 1.1.1
Consider the corresponding sign chart.
Etapa 1.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Etapa 1.1.3
The minor for is the determinant with row and column deleted.
Etapa 1.1.4
Multiply element by its cofactor.
Etapa 1.1.5
The minor for is the determinant with row and column deleted.
Etapa 1.1.6
Multiply element by its cofactor.
Etapa 1.1.7
The minor for is the determinant with row and column deleted.
Etapa 1.1.8
Multiply element by its cofactor.
Etapa 1.1.9
The minor for is the determinant with row and column deleted.
Etapa 1.1.10
Multiply element by its cofactor.
Etapa 1.1.11
Add the terms together.
Etapa 1.2
Multiplique por .
Etapa 1.3
Multiplique por .
Etapa 1.4
Multiplique por .
Etapa 1.5
Avalie .
Etapa 1.5.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Etapa 1.5.1.1
Consider the corresponding sign chart.
Etapa 1.5.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Etapa 1.5.1.3
The minor for is the determinant with row and column deleted.
Etapa 1.5.1.4
Multiply element by its cofactor.
Etapa 1.5.1.5
The minor for is the determinant with row and column deleted.
Etapa 1.5.1.6
Multiply element by its cofactor.
Etapa 1.5.1.7
The minor for is the determinant with row and column deleted.
Etapa 1.5.1.8
Multiply element by its cofactor.
Etapa 1.5.1.9
Add the terms together.
Etapa 1.5.2
Multiplique por .
Etapa 1.5.3
Multiplique por .
Etapa 1.5.4
Multiplique por .
Etapa 1.5.5
Simplifique o determinante.
Etapa 1.5.5.1
Some e .
Etapa 1.5.5.2
Some e .
Etapa 1.6
Simplifique o determinante.
Etapa 1.6.1
Some e .
Etapa 1.6.2
Some e .
Etapa 1.6.3
Subtraia de .
Etapa 2
There is no inverse because the determinant is .