Álgebra linear Exemplos

Simplifique a Matriz [[2.04a,-1b,0d,0g],[-1a,2.04b,-1d,0g],[0a,-1b,2.04d,-1g],[0a,0b,-1d,2.04g]]-[[40.8],[0.8],[0.8],[200.8]]
[2.04a-1b0d0g-1a2.04b-1d0g0a-1b2.04d-1g0a0b-1d2.04g]-[40.80.80.8200.8]⎢ ⎢ ⎢ ⎢2.04a1b0d0g1a2.04b1d0g0a1b2.04d1g0a0b1d2.04g⎥ ⎥ ⎥ ⎥⎢ ⎢ ⎢ ⎢40.80.80.8200.8⎥ ⎥ ⎥ ⎥
Etapa 1
Reescreva -1b1b como -bb.
[2.04a-b0d0g-1a2.04b-1d0g0a-1b2.04d-1g0a0b-1d2.04g]-[40.80.80.8200.8]⎢ ⎢ ⎢ ⎢2.04ab0d0g1a2.04b1d0g0a1b2.04d1g0a0b1d2.04g⎥ ⎥ ⎥ ⎥⎢ ⎢ ⎢ ⎢40.80.80.8200.8⎥ ⎥ ⎥ ⎥
Etapa 2
Multiplique 00 por dd.
[2.04a-b00g-1a2.04b-1d0g0a-1b2.04d-1g0a0b-1d2.04g]-[40.80.80.8200.8]⎢ ⎢ ⎢ ⎢2.04ab00g1a2.04b1d0g0a1b2.04d1g0a0b1d2.04g⎥ ⎥ ⎥ ⎥⎢ ⎢ ⎢ ⎢40.80.80.8200.8⎥ ⎥ ⎥ ⎥
Etapa 3
Multiplique 00 por gg.
[2.04a-b00-1a2.04b-1d0g0a-1b2.04d-1g0a0b-1d2.04g]-[40.80.80.8200.8]⎢ ⎢ ⎢ ⎢2.04ab001a2.04b1d0g0a1b2.04d1g0a0b1d2.04g⎥ ⎥ ⎥ ⎥⎢ ⎢ ⎢ ⎢40.80.80.8200.8⎥ ⎥ ⎥ ⎥
Etapa 4
Reescreva -1a1a como -aa.
[2.04a-b00-a2.04b-1d0g0a-1b2.04d-1g0a0b-1d2.04g]-[40.80.80.8200.8]⎢ ⎢ ⎢ ⎢2.04ab00a2.04b1d0g0a1b2.04d1g0a0b1d2.04g⎥ ⎥ ⎥ ⎥⎢ ⎢ ⎢ ⎢40.80.80.8200.8⎥ ⎥ ⎥ ⎥
Etapa 5
Reescreva -1d1d como -dd.
[2.04a-b00-a2.04b-d0g0a-1b2.04d-1g0a0b-1d2.04g]-[40.80.80.8200.8]⎢ ⎢ ⎢ ⎢2.04ab00a2.04bd0g0a1b2.04d1g0a0b1d2.04g⎥ ⎥ ⎥ ⎥⎢ ⎢ ⎢ ⎢40.80.80.8200.8⎥ ⎥ ⎥ ⎥
Etapa 6
Multiplique 00 por gg.
[2.04a-b00-a2.04b-d00a-1b2.04d-1g0a0b-1d2.04g]-[40.80.80.8200.8]⎢ ⎢ ⎢ ⎢2.04ab00a2.04bd00a1b2.04d1g0a0b1d2.04g⎥ ⎥ ⎥ ⎥⎢ ⎢ ⎢ ⎢40.80.80.8200.8⎥ ⎥ ⎥ ⎥
Etapa 7
Multiplique 00 por aa.
[2.04a-b00-a2.04b-d00-1b2.04d-1g0a0b-1d2.04g]-[40.80.80.8200.8]⎢ ⎢ ⎢ ⎢2.04ab00a2.04bd001b2.04d1g0a0b1d2.04g⎥ ⎥ ⎥ ⎥⎢ ⎢ ⎢ ⎢40.80.80.8200.8⎥ ⎥ ⎥ ⎥
Etapa 8
Reescreva -1b como -b.
[2.04a-b00-a2.04b-d00-b2.04d-1g0a0b-1d2.04g]-[40.80.80.8200.8]
Etapa 9
Reescreva -1g como -g.
[2.04a-b00-a2.04b-d00-b2.04d-g0a0b-1d2.04g]-[40.80.80.8200.8]
Etapa 10
Multiplique 0 por a.
[2.04a-b00-a2.04b-d00-b2.04d-g00b-1d2.04g]-[40.80.80.8200.8]
Etapa 11
Multiplique 0 por b.
[2.04a-b00-a2.04b-d00-b2.04d-g00-1d2.04g]-[40.80.80.8200.8]
Etapa 12
Reescreva -1d como -d.
[2.04a-b00-a2.04b-d00-b2.04d-g00-d2.04g]-[40.80.80.8200.8]
 [x2  12  π  xdx ]