Insira um problema...
Matemática discreta Exemplos
Etapa 1
Defina o radicando em como menor do que para encontrar onde a expressão está indefinida.
Etapa 2
Etapa 2.1
Divida cada termo em por e simplifique.
Etapa 2.1.1
Divida cada termo em por .
Etapa 2.1.2
Simplifique o lado esquerdo.
Etapa 2.1.2.1
Cancele o fator comum de .
Etapa 2.1.2.1.1
Cancele o fator comum.
Etapa 2.1.2.1.2
Divida por .
Etapa 2.1.3
Simplifique o lado direito.
Etapa 2.1.3.1
Divida por .
Etapa 2.2
Take the specified root of both sides of the inequality to eliminate the exponent on the left side.
Etapa 2.3
Simplifique a equação.
Etapa 2.3.1
Simplifique o lado esquerdo.
Etapa 2.3.1.1
Elimine os termos abaixo do radical.
Etapa 2.3.2
Simplifique o lado direito.
Etapa 2.3.2.1
Simplifique .
Etapa 2.3.2.1.1
Reescreva como .
Etapa 2.3.2.1.2
Elimine os termos abaixo do radical.
Etapa 3
A equação é indefinida quando o denominador é igual a , o argumento de uma raiz quadrada é menor do que ou o argumento de um logaritmo é menor do que ou igual a .
Etapa 4