Insira um problema...
Matemática discreta Exemplos
x=u(u⋅(1-u)s-1)x=u(u⋅(1−u)s−1)
Etapa 1
Etapa 1.1
Para escrever -1−1 como fração com um denominador comum, multiplique por ssss.
x=u(u(1-u)s-1⋅ss)x=u(u(1−u)s−1⋅ss)
Etapa 1.2
Simplifique os termos.
Etapa 1.2.1
Combine -1−1 e ssss.
x=u(u(1-u)s+-ss)x=u(u(1−u)s+−ss)
Etapa 1.2.2
Combine os numeradores em relação ao denominador comum.
x=u(u(1-u)-ss)x=u(u(1−u)−ss)
x=u(u(1-u)-ss)x=u(u(1−u)−ss)
Etapa 1.3
Simplifique o numerador.
Etapa 1.3.1
Aplique a propriedade distributiva.
x=u(u⋅1+u(-u)-ss)x=u(u⋅1+u(−u)−ss)
Etapa 1.3.2
Multiplique uu por 11.
x=u(u+u(-u)-ss)x=u(u+u(−u)−ss)
Etapa 1.3.3
Reescreva usando a propriedade comutativa da multiplicação.
x=u(u-u⋅u-ss)
Etapa 1.3.4
Multiplique u por u somando os expoentes.
Etapa 1.3.4.1
Mova u.
x=u(u-(u⋅u)-ss)
Etapa 1.3.4.2
Multiplique u por u.
x=u(u-u2-ss)
x=u(u-u2-ss)
x=u(u-u2-ss)
x=u(u-u2-ss)
Etapa 2
A linear equation is an equation of a straight line, which means that the degree of a linear equation must be 0 or 1 for each of its variables. In this case, the degree of variable x is 1, the degree of variable u is 3, the degrees of the variables in the equation violate the linear equation definition, which means that the equation is not a linear equation.
Não linear