Matemática discreta Exemplos

Encontre o Domínio (2x)/( raiz cúbica de 3x^2)
Etapa 1
Defina o denominador em como igual a para encontrar onde a expressão está indefinida.
Etapa 2
Resolva .
Toque para ver mais passagens...
Etapa 2.1
Para remover o radical no lado esquerdo da equação, eleve ao cubo os dois lados da equação.
Etapa 2.2
Simplifique cada lado da equação.
Toque para ver mais passagens...
Etapa 2.2.1
Use para reescrever como .
Etapa 2.2.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 2.2.2.1
Simplifique .
Toque para ver mais passagens...
Etapa 2.2.2.1.1
Multiplique os expoentes em .
Toque para ver mais passagens...
Etapa 2.2.2.1.1.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 2.2.2.1.1.2
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 2.2.2.1.1.2.1
Cancele o fator comum.
Etapa 2.2.2.1.1.2.2
Reescreva a expressão.
Etapa 2.2.2.1.2
Simplifique.
Etapa 2.2.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 2.2.3.1
Elevar a qualquer potência positiva produz .
Etapa 2.3
Resolva .
Toque para ver mais passagens...
Etapa 2.3.1
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 2.3.1.1
Divida cada termo em por .
Etapa 2.3.1.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 2.3.1.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 2.3.1.2.1.1
Cancele o fator comum.
Etapa 2.3.1.2.1.2
Divida por .
Etapa 2.3.1.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 2.3.1.3.1
Divida por .
Etapa 2.3.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Etapa 2.3.3
Simplifique .
Toque para ver mais passagens...
Etapa 2.3.3.1
Reescreva como .
Etapa 2.3.3.2
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Etapa 2.3.3.3
Mais ou menos é .
Etapa 3
O domínio consiste em todos os valores de que tornam a expressão definida.
Notação de intervalo:
Notação de construtor de conjuntos:
Etapa 4