Matemática discreta Exemplos

Encontre o Domínio raiz quadrada da base do logaritmo x de x-1
Etapa 1
Defina a base em como maior do que para encontrar onde a expressão está definida.
Etapa 2
Defina o argumento em como maior do que para encontrar onde a expressão está definida.
Etapa 3
Some aos dois lados da desigualdade.
Etapa 4
Defina o radicando em como maior do que ou igual a para encontrar onde a expressão está definida.
Etapa 5
Resolva .
Toque para ver mais passagens...
Etapa 5.1
Converta a desigualdade em uma igualdade.
Etapa 5.2
Resolva a equação.
Toque para ver mais passagens...
Etapa 5.2.1
Reescreva na forma exponencial usando a definição de um logaritmo. Se e forem números reais positivos e , então, será equivalente a .
Etapa 5.2.2
Resolva .
Toque para ver mais passagens...
Etapa 5.2.2.1
Qualquer coisa elevada a é .
Etapa 5.2.2.2
Como está do lado direito da equação, troque os lados para que ela fique do lado esquerdo da equação.
Etapa 5.2.2.3
Mova todos os termos que não contêm para o lado direito da equação.
Toque para ver mais passagens...
Etapa 5.2.2.3.1
Some aos dois lados da equação.
Etapa 5.2.2.3.2
Some e .
Etapa 5.3
Encontre o domínio de .
Toque para ver mais passagens...
Etapa 5.3.1
Defina a base em como maior do que para encontrar onde a expressão está definida.
Etapa 5.3.2
Defina o argumento em como maior do que para encontrar onde a expressão está definida.
Etapa 5.3.3
Some aos dois lados da desigualdade.
Etapa 5.3.4
Defina a base em como igual a para encontrar onde a expressão está indefinida.
Etapa 5.3.5
O domínio consiste em todos os valores de que tornam a expressão definida.
Etapa 5.4
A solução consiste em todos os intervalos verdadeiros.
Etapa 6
Defina a base em como igual a para encontrar onde a expressão está indefinida.
Etapa 7
O domínio consiste em todos os valores de que tornam a expressão definida.
Notação de intervalo:
Notação de construtor de conjuntos:
Etapa 8