Matemática discreta Exemplos

Encontre a Inversa P(x)=-0.4x^2+80*50-1600
Etapa 1
Escreva como uma equação.
Etapa 2
Alterne as variáveis.
Etapa 3
Resolva .
Toque para ver mais passagens...
Etapa 3.1
Reescreva a equação como .
Etapa 3.2
Simplifique .
Toque para ver mais passagens...
Etapa 3.2.1
Multiplique por .
Etapa 3.2.2
Subtraia de .
Etapa 3.3
Subtraia dos dois lados da equação.
Etapa 3.4
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 3.4.1
Divida cada termo em por .
Etapa 3.4.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 3.4.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 3.4.2.1.1
Cancele o fator comum.
Etapa 3.4.2.1.2
Divida por .
Etapa 3.4.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 3.4.3.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 3.4.3.1.1
Mova o número negativo para a frente da fração.
Etapa 3.4.3.1.2
Multiplique por .
Etapa 3.4.3.1.3
Fatore de .
Etapa 3.4.3.1.4
Separe as frações.
Etapa 3.4.3.1.5
Divida por .
Etapa 3.4.3.1.6
Divida por .
Etapa 3.4.3.1.7
Multiplique por .
Etapa 3.4.3.1.8
Divida por .
Etapa 3.5
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Etapa 3.6
Simplifique .
Toque para ver mais passagens...
Etapa 3.6.1
Fatore de .
Toque para ver mais passagens...
Etapa 3.6.1.1
Fatore de .
Etapa 3.6.1.2
Fatore de .
Etapa 3.6.1.3
Fatore de .
Etapa 3.6.2
Reescreva como .
Toque para ver mais passagens...
Etapa 3.6.2.1
Reescreva como .
Etapa 3.6.2.2
Reescreva como .
Etapa 3.6.3
Elimine os termos abaixo do radical.
Etapa 3.6.4
Eleve à potência de .
Etapa 3.7
A solução completa é resultado das partes positiva e negativa da solução.
Toque para ver mais passagens...
Etapa 3.7.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 3.7.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 3.7.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 4
Replace with to show the final answer.
Etapa 5
Verifique se é o inverso de .
Toque para ver mais passagens...
Etapa 5.1
O domínio do inverso é o intervalo da função original e vice-versa. Encontre o domínio e o intervalo de e e os compare.
Etapa 5.2
Encontre o intervalo de .
Toque para ver mais passagens...
Etapa 5.2.1
O intervalo é o conjunto de todos os valores válidos. Use o gráfico para encontrar o intervalo.
Notação de intervalo:
Etapa 5.3
Encontre o domínio de .
Toque para ver mais passagens...
Etapa 5.3.1
Defina o radicando em como maior do que ou igual a para encontrar onde a expressão está definida.
Etapa 5.3.2
Resolva .
Toque para ver mais passagens...
Etapa 5.3.2.1
Subtraia dos dois lados da desigualdade.
Etapa 5.3.2.2
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 5.3.2.2.1
Divida cada termo em por . Ao multiplicar ou dividir os dois lados de uma desigualdade por um valor negativo, inverta a direção do sinal de desigualdade.
Etapa 5.3.2.2.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 5.3.2.2.2.1
Dividir dois valores negativos resulta em um valor positivo.
Etapa 5.3.2.2.2.2
Divida por .
Etapa 5.3.2.2.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 5.3.2.2.3.1
Divida por .
Etapa 5.3.3
O domínio consiste em todos os valores de que tornam a expressão definida.
Etapa 5.4
Encontre o domínio de .
Toque para ver mais passagens...
Etapa 5.4.1
O domínio da expressão consiste em todos os números reais, exceto quando a expressão é indefinida. Nesse caso, não existe um número real que torne a expressão indefinida.
Etapa 5.5
Como o domínio de é o intervalo de , e o intervalo de é o domínio de , então, é o inverso de .
Etapa 6