Insira um problema...
Matemática discreta Exemplos
Etapa 1
Etapa 1.1
Reescreva como .
Etapa 1.2
Como os dois termos são quadrados perfeitos, fatore usando a fórmula da diferença de quadrados, em que e .
Etapa 2
Etapa 2.1
Encontrar o MMC de uma lista de valores é o mesmo que encontrar o MMC dos denominadores desses valores.
Etapa 2.2
O MMC é o menor número positivo pelo qual todos os números se dividem uniformemente.
1. Liste os fatores primos de cada número.
2. Multiplique cada fator pelo maior número de vezes em que ele ocorre em cada número.
Etapa 2.3
O número não é primo porque tem apenas um fator positivo, que é ele mesmo.
Não é primo
Etapa 2.4
O MMC de é o resultado da multiplicação de todos os fatores primos pelo maior número de vezes que eles ocorrem em qualquer um dos números.
Etapa 2.5
O fator de é o próprio .
ocorre vez.
Etapa 2.6
O fator de é o próprio .
ocorre vez.
Etapa 2.7
O fator de é o próprio .
ocorre vez.
Etapa 2.8
O MMC de é o resultado da multiplicação de todos os fatores pelo maior número de vezes que eles ocorrem em qualquer um dos termos.
Etapa 3
Etapa 3.1
Multiplique cada termo em por .
Etapa 3.2
Simplifique o lado esquerdo.
Etapa 3.2.1
Simplifique cada termo.
Etapa 3.2.1.1
Cancele o fator comum de .
Etapa 3.2.1.1.1
Cancele o fator comum.
Etapa 3.2.1.1.2
Reescreva a expressão.
Etapa 3.2.1.2
Cancele o fator comum de .
Etapa 3.2.1.2.1
Mova o negativo de maior ordem em para o numerador.
Etapa 3.2.1.2.2
Fatore de .
Etapa 3.2.1.2.3
Cancele o fator comum.
Etapa 3.2.1.2.4
Reescreva a expressão.
Etapa 3.2.1.3
Aplique a propriedade distributiva.
Etapa 3.2.1.4
Multiplique por .
Etapa 3.2.2
Simplifique somando os termos.
Etapa 3.2.2.1
Combine os termos opostos em .
Etapa 3.2.2.1.1
Subtraia de .
Etapa 3.2.2.1.2
Some e .
Etapa 3.2.2.2
Some e .
Etapa 3.3
Simplifique o lado direito.
Etapa 3.3.1
Simplifique cada termo.
Etapa 3.3.1.1
Multiplique por .
Etapa 3.3.1.2
Expanda usando o método FOIL.
Etapa 3.3.1.2.1
Aplique a propriedade distributiva.
Etapa 3.3.1.2.2
Aplique a propriedade distributiva.
Etapa 3.3.1.2.3
Aplique a propriedade distributiva.
Etapa 3.3.1.3
Combine os termos opostos em .
Etapa 3.3.1.3.1
Reorganize os fatores nos termos e .
Etapa 3.3.1.3.2
Subtraia de .
Etapa 3.3.1.3.3
Some e .
Etapa 3.3.1.4
Simplifique cada termo.
Etapa 3.3.1.4.1
Multiplique por .
Etapa 3.3.1.4.2
Multiplique por .
Etapa 3.3.1.5
Cancele o fator comum de .
Etapa 3.3.1.5.1
Fatore de .
Etapa 3.3.1.5.2
Cancele o fator comum.
Etapa 3.3.1.5.3
Reescreva a expressão.
Etapa 3.3.2
Some e .
Etapa 4
Etapa 4.1
Reescreva a equação como .
Etapa 4.2
Mova todos os termos que não contêm para o lado direito da equação.
Etapa 4.2.1
Subtraia dos dois lados da equação.
Etapa 4.2.2
Subtraia de .
Etapa 4.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Etapa 4.4
Qualquer raiz de é .
Etapa 4.5
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 4.5.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 4.5.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 4.5.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 5
Exclua as soluções que não tornam verdadeira.