Matemática discreta Exemplos

Löse nach x auf x^4(1-3x)(5x+2)>0
Etapa 1
Se qualquer fator individual no lado esquerdo da equação for igual a , toda a expressão será igual a .
Etapa 2
Defina como igual a e resolva para .
Toque para ver mais passagens...
Etapa 2.1
Defina como igual a .
Etapa 2.2
Resolva para .
Toque para ver mais passagens...
Etapa 2.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Etapa 2.2.2
Simplifique .
Toque para ver mais passagens...
Etapa 2.2.2.1
Reescreva como .
Etapa 2.2.2.2
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Etapa 2.2.2.3
Mais ou menos é .
Etapa 3
Defina como igual a e resolva para .
Toque para ver mais passagens...
Etapa 3.1
Defina como igual a .
Etapa 3.2
Resolva para .
Toque para ver mais passagens...
Etapa 3.2.1
Subtraia dos dois lados da equação.
Etapa 3.2.2
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 3.2.2.1
Divida cada termo em por .
Etapa 3.2.2.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 3.2.2.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 3.2.2.2.1.1
Cancele o fator comum.
Etapa 3.2.2.2.1.2
Divida por .
Etapa 3.2.2.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 3.2.2.3.1
Dividir dois valores negativos resulta em um valor positivo.
Etapa 4
Defina como igual a e resolva para .
Toque para ver mais passagens...
Etapa 4.1
Defina como igual a .
Etapa 4.2
Resolva para .
Toque para ver mais passagens...
Etapa 4.2.1
Subtraia dos dois lados da equação.
Etapa 4.2.2
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 4.2.2.1
Divida cada termo em por .
Etapa 4.2.2.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 4.2.2.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 4.2.2.2.1.1
Cancele o fator comum.
Etapa 4.2.2.2.1.2
Divida por .
Etapa 4.2.2.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 4.2.2.3.1
Mova o número negativo para a frente da fração.
Etapa 5
A solução final são todos os valores que tornam verdadeiro.
Etapa 6
Use cada raiz para criar intervalos de teste.
Etapa 7
Escolha um valor de teste de cada intervalo e substitua esse valor pela desigualdade original para determinar quais intervalos satisfazem a desigualdade.
Toque para ver mais passagens...
Etapa 7.1
Teste um valor no intervalo e veja se ele torna a desigualdade verdadeira.
Toque para ver mais passagens...
Etapa 7.1.1
Escolha um valor no intervalo e veja se ele torna a desigualdade original verdadeira.
Etapa 7.1.2
Substitua por na desigualdade original.
Etapa 7.1.3
O lado esquerdo não é maior do que o lado direito , o que significa que a afirmação em questão é falsa.
False
False
Etapa 7.2
Teste um valor no intervalo e veja se ele torna a desigualdade verdadeira.
Toque para ver mais passagens...
Etapa 7.2.1
Escolha um valor no intervalo e veja se ele torna a desigualdade original verdadeira.
Etapa 7.2.2
Substitua por na desigualdade original.
Etapa 7.2.3
O lado esquerdo é maior do que o lado direito , o que significa que a afirmação em questão é sempre verdadeira.
True
True
Etapa 7.3
Teste um valor no intervalo e veja se ele torna a desigualdade verdadeira.
Toque para ver mais passagens...
Etapa 7.3.1
Escolha um valor no intervalo e veja se ele torna a desigualdade original verdadeira.
Etapa 7.3.2
Substitua por na desigualdade original.
Etapa 7.3.3
O lado esquerdo é maior do que o lado direito , o que significa que a afirmação em questão é sempre verdadeira.
True
True
Etapa 7.4
Teste um valor no intervalo e veja se ele torna a desigualdade verdadeira.
Toque para ver mais passagens...
Etapa 7.4.1
Escolha um valor no intervalo e veja se ele torna a desigualdade original verdadeira.
Etapa 7.4.2
Substitua por na desigualdade original.
Etapa 7.4.3
O lado esquerdo não é maior do que o lado direito , o que significa que a afirmação em questão é falsa.
False
False
Etapa 7.5
Compare os intervalos para determinar quais satisfazem a desigualdade original.
Falso
Verdadeiro
Verdadeiro
Falso
Falso
Verdadeiro
Verdadeiro
Falso
Etapa 8
A solução consiste em todos os intervalos verdadeiros.
ou
Etapa 9
O resultado pode ser mostrado de várias formas.
Fórmula da desigualdade:
Notação de intervalo:
Etapa 10