Insira um problema...
Matemática discreta Exemplos
x-3y+4z=25 , y-z+w=-12 , -2x+3y-3z+3w=-18 , 3y-4z+w=-29
Etapa 1
Etapa 1.1
Mova -z.
x-3y+4z=25
y+w-z=-12
-2x+3y-3z+3w=-18
3y-4z+w=-29
Etapa 1.2
Reordene y e w.
x-3y+4z=25
w+y-z=-12
-2x+3y-3z+3w=-18
3y-4z+w=-29
Etapa 1.3
Mova -3z.
x-3y+4z=25
w+y-z=-12
-2x+3y+3w-3z=-18
3y-4z+w=-29
Etapa 1.4
Mova 3y.
x-3y+4z=25
w+y-z=-12
-2x+3w+3y-3z=-18
3y-4z+w=-29
Etapa 1.5
Reordene -2x e 3w.
x-3y+4z=25
w+y-z=-12
3w-2x+3y-3z=-18
3y-4z+w=-29
Etapa 1.6
Mova -4z.
x-3y+4z=25
w+y-z=-12
3w-2x+3y-3z=-18
3y+w-4z=-29
Etapa 1.7
Reordene 3y e w.
x-3y+4z=25
w+y-z=-12
3w-2x+3y-3z=-18
w+3y-4z=-29
x-3y+4z=25
w+y-z=-12
3w-2x+3y-3z=-18
w+3y-4z=-29
Etapa 2
Represente o sistema de equações em formato de matriz.
[01-34101-13-23-3103-4][wxyz]=[25-12-18-29]
Etapa 3
Etapa 3.1
Write [01-34101-13-23-3103-4] in determinant notation.
|01-34101-13-23-3103-4|
Etapa 3.2
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in column 2 by its cofactor and add.
Etapa 3.2.1
Consider the corresponding sign chart.
|+-+--+-++-+--+-+|
Etapa 3.2.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Etapa 3.2.3
The minor for a12 is the determinant with row 1 and column 2 deleted.
|11-133-313-4|
Etapa 3.2.4
Multiply element a12 by its cofactor.
-1|11-133-313-4|
Etapa 3.2.5
The minor for a22 is the determinant with row 2 and column 2 deleted.
|0-3433-313-4|
Etapa 3.2.6
Multiply element a22 by its cofactor.
0|0-3433-313-4|
Etapa 3.2.7
The minor for a32 is the determinant with row 3 and column 2 deleted.
|0-3411-113-4|
Etapa 3.2.8
Multiply element a32 by its cofactor.
2|0-3411-113-4|
Etapa 3.2.9
The minor for a42 is the determinant with row 4 and column 2 deleted.
|0-3411-133-3|
Etapa 3.2.10
Multiply element a42 by its cofactor.
0|0-3411-133-3|
Etapa 3.2.11
Add the terms together.
-1|11-133-313-4|+0|0-3433-313-4|+2|0-3411-113-4|+0|0-3411-133-3|
-1|11-133-313-4|+0|0-3433-313-4|+2|0-3411-113-4|+0|0-3411-133-3|
Etapa 3.3
Multiplique 0 por |0-3433-313-4|.
-1|11-133-313-4|+0+2|0-3411-113-4|+0|0-3411-133-3|
Etapa 3.4
Multiplique 0 por |0-3411-133-3|.
-1|11-133-313-4|+0+2|0-3411-113-4|+0
Etapa 3.5
Avalie |11-133-313-4|.
Etapa 3.5.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Etapa 3.5.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Etapa 3.5.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Etapa 3.5.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|3-33-4|
Etapa 3.5.1.4
Multiply element a11 by its cofactor.
1|3-33-4|
Etapa 3.5.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|3-31-4|
Etapa 3.5.1.6
Multiply element a12 by its cofactor.
-1|3-31-4|
Etapa 3.5.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|3313|
Etapa 3.5.1.8
Multiply element a13 by its cofactor.
-1|3313|
Etapa 3.5.1.9
Add the terms together.
-1(1|3-33-4|-1|3-31-4|-1|3313|)+0+2|0-3411-113-4|+0
-1(1|3-33-4|-1|3-31-4|-1|3313|)+0+2|0-3411-113-4|+0
Etapa 3.5.2
Avalie |3-33-4|.
Etapa 3.5.2.1
O determinante de uma matriz 2×2 pode ser encontrado ao usar a fórmula |abcd|=ad-cb.
-1(1(3⋅-4-3⋅-3)-1|3-31-4|-1|3313|)+0+2|0-3411-113-4|+0
Etapa 3.5.2.2
Simplifique o determinante.
Etapa 3.5.2.2.1
Simplifique cada termo.
Etapa 3.5.2.2.1.1
Multiplique 3 por -4.
-1(1(-12-3⋅-3)-1|3-31-4|-1|3313|)+0+2|0-3411-113-4|+0
Etapa 3.5.2.2.1.2
Multiplique -3 por -3.
-1(1(-12+9)-1|3-31-4|-1|3313|)+0+2|0-3411-113-4|+0
-1(1(-12+9)-1|3-31-4|-1|3313|)+0+2|0-3411-113-4|+0
Etapa 3.5.2.2.2
Some -12 e 9.
-1(1⋅-3-1|3-31-4|-1|3313|)+0+2|0-3411-113-4|+0
-1(1⋅-3-1|3-31-4|-1|3313|)+0+2|0-3411-113-4|+0
-1(1⋅-3-1|3-31-4|-1|3313|)+0+2|0-3411-113-4|+0
Etapa 3.5.3
Avalie |3-31-4|.
Etapa 3.5.3.1
O determinante de uma matriz 2×2 pode ser encontrado ao usar a fórmula |abcd|=ad-cb.
-1(1⋅-3-1(3⋅-4-1⋅-3)-1|3313|)+0+2|0-3411-113-4|+0
Etapa 3.5.3.2
Simplifique o determinante.
Etapa 3.5.3.2.1
Simplifique cada termo.
Etapa 3.5.3.2.1.1
Multiplique 3 por -4.
-1(1⋅-3-1(-12-1⋅-3)-1|3313|)+0+2|0-3411-113-4|+0
Etapa 3.5.3.2.1.2
Multiplique -1 por -3.
-1(1⋅-3-1(-12+3)-1|3313|)+0+2|0-3411-113-4|+0
-1(1⋅-3-1(-12+3)-1|3313|)+0+2|0-3411-113-4|+0
Etapa 3.5.3.2.2
Some -12 e 3.
-1(1⋅-3-1⋅-9-1|3313|)+0+2|0-3411-113-4|+0
-1(1⋅-3-1⋅-9-1|3313|)+0+2|0-3411-113-4|+0
-1(1⋅-3-1⋅-9-1|3313|)+0+2|0-3411-113-4|+0
Etapa 3.5.4
Avalie |3313|.
Etapa 3.5.4.1
O determinante de uma matriz 2×2 pode ser encontrado ao usar a fórmula |abcd|=ad-cb.
-1(1⋅-3-1⋅-9-1(3⋅3-1⋅3))+0+2|0-3411-113-4|+0
Etapa 3.5.4.2
Simplifique o determinante.
Etapa 3.5.4.2.1
Simplifique cada termo.
Etapa 3.5.4.2.1.1
Multiplique 3 por 3.
-1(1⋅-3-1⋅-9-1(9-1⋅3))+0+2|0-3411-113-4|+0
Etapa 3.5.4.2.1.2
Multiplique -1 por 3.
-1(1⋅-3-1⋅-9-1(9-3))+0+2|0-3411-113-4|+0
-1(1⋅-3-1⋅-9-1(9-3))+0+2|0-3411-113-4|+0
Etapa 3.5.4.2.2
Subtraia 3 de 9.
-1(1⋅-3-1⋅-9-1⋅6)+0+2|0-3411-113-4|+0
-1(1⋅-3-1⋅-9-1⋅6)+0+2|0-3411-113-4|+0
-1(1⋅-3-1⋅-9-1⋅6)+0+2|0-3411-113-4|+0
Etapa 3.5.5
Simplifique o determinante.
Etapa 3.5.5.1
Simplifique cada termo.
Etapa 3.5.5.1.1
Multiplique -3 por 1.
-1(-3-1⋅-9-1⋅6)+0+2|0-3411-113-4|+0
Etapa 3.5.5.1.2
Multiplique -1 por -9.
-1(-3+9-1⋅6)+0+2|0-3411-113-4|+0
Etapa 3.5.5.1.3
Multiplique -1 por 6.
-1(-3+9-6)+0+2|0-3411-113-4|+0
-1(-3+9-6)+0+2|0-3411-113-4|+0
Etapa 3.5.5.2
Some -3 e 9.
-1(6-6)+0+2|0-3411-113-4|+0
Etapa 3.5.5.3
Subtraia 6 de 6.
-1⋅0+0+2|0-3411-113-4|+0
-1⋅0+0+2|0-3411-113-4|+0
-1⋅0+0+2|0-3411-113-4|+0
Etapa 3.6
Avalie |0-3411-113-4|.
Etapa 3.6.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Etapa 3.6.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Etapa 3.6.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Etapa 3.6.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|1-13-4|
Etapa 3.6.1.4
Multiply element a11 by its cofactor.
0|1-13-4|
Etapa 3.6.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|1-11-4|
Etapa 3.6.1.6
Multiply element a12 by its cofactor.
3|1-11-4|
Etapa 3.6.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|1113|
Etapa 3.6.1.8
Multiply element a13 by its cofactor.
4|1113|
Etapa 3.6.1.9
Add the terms together.
-1⋅0+0+2(0|1-13-4|+3|1-11-4|+4|1113|)+0
-1⋅0+0+2(0|1-13-4|+3|1-11-4|+4|1113|)+0
Etapa 3.6.2
Multiplique 0 por |1-13-4|.
-1⋅0+0+2(0+3|1-11-4|+4|1113|)+0
Etapa 3.6.3
Avalie |1-11-4|.
Etapa 3.6.3.1
O determinante de uma matriz 2×2 pode ser encontrado ao usar a fórmula |abcd|=ad-cb.
-1⋅0+0+2(0+3(1⋅-4-1⋅-1)+4|1113|)+0
Etapa 3.6.3.2
Simplifique o determinante.
Etapa 3.6.3.2.1
Simplifique cada termo.
Etapa 3.6.3.2.1.1
Multiplique -4 por 1.
-1⋅0+0+2(0+3(-4-1⋅-1)+4|1113|)+0
Etapa 3.6.3.2.1.2
Multiplique -1 por -1.
-1⋅0+0+2(0+3(-4+1)+4|1113|)+0
-1⋅0+0+2(0+3(-4+1)+4|1113|)+0
Etapa 3.6.3.2.2
Some -4 e 1.
-1⋅0+0+2(0+3⋅-3+4|1113|)+0
-1⋅0+0+2(0+3⋅-3+4|1113|)+0
-1⋅0+0+2(0+3⋅-3+4|1113|)+0
Etapa 3.6.4
Avalie |1113|.
Etapa 3.6.4.1
O determinante de uma matriz 2×2 pode ser encontrado ao usar a fórmula |abcd|=ad-cb.
-1⋅0+0+2(0+3⋅-3+4(1⋅3-1⋅1))+0
Etapa 3.6.4.2
Simplifique o determinante.
Etapa 3.6.4.2.1
Simplifique cada termo.
Etapa 3.6.4.2.1.1
Multiplique 3 por 1.
-1⋅0+0+2(0+3⋅-3+4(3-1⋅1))+0
Etapa 3.6.4.2.1.2
Multiplique -1 por 1.
-1⋅0+0+2(0+3⋅-3+4(3-1))+0
-1⋅0+0+2(0+3⋅-3+4(3-1))+0
Etapa 3.6.4.2.2
Subtraia 1 de 3.
-1⋅0+0+2(0+3⋅-3+4⋅2)+0
-1⋅0+0+2(0+3⋅-3+4⋅2)+0
-1⋅0+0+2(0+3⋅-3+4⋅2)+0
Etapa 3.6.5
Simplifique o determinante.
Etapa 3.6.5.1
Simplifique cada termo.
Etapa 3.6.5.1.1
Multiplique 3 por -3.
-1⋅0+0+2(0-9+4⋅2)+0
Etapa 3.6.5.1.2
Multiplique 4 por 2.
-1⋅0+0+2(0-9+8)+0
-1⋅0+0+2(0-9+8)+0
Etapa 3.6.5.2
Subtraia 9 de 0.
-1⋅0+0+2(-9+8)+0
Etapa 3.6.5.3
Some -9 e 8.
-1⋅0+0+2⋅-1+0
-1⋅0+0+2⋅-1+0
-1⋅0+0+2⋅-1+0
Etapa 3.7
Simplifique o determinante.
Etapa 3.7.1
Simplifique cada termo.
Etapa 3.7.1.1
Multiplique -1 por 0.
0+0+2⋅-1+0
Etapa 3.7.1.2
Multiplique 2 por -1.
0+0-2+0
0+0-2+0
Etapa 3.7.2
Some 0 e 0.
0-2+0
Etapa 3.7.3
Subtraia 2 de 0.
-2+0
Etapa 3.7.4
Some -2 e 0.
-2
-2
D=-2
Etapa 4
Since the determinant is not 0, the system can be solved using Cramer's Rule.
Etapa 5
Etapa 5.1
Replace column 1 of the coefficient matrix that corresponds to the w-coefficients of the system with [25-12-18-29].
|251-34-1201-1-18-23-3-2903-4|
Etapa 5.2
Find the determinant.
Etapa 5.2.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in column 2 by its cofactor and add.
Etapa 5.2.1.1
Consider the corresponding sign chart.
|+-+--+-++-+--+-+|
Etapa 5.2.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Etapa 5.2.1.3
The minor for a12 is the determinant with row 1 and column 2 deleted.
|-121-1-183-3-293-4|
Etapa 5.2.1.4
Multiply element a12 by its cofactor.
-1|-121-1-183-3-293-4|
Etapa 5.2.1.5
The minor for a22 is the determinant with row 2 and column 2 deleted.
|25-34-183-3-293-4|
Etapa 5.2.1.6
Multiply element a22 by its cofactor.
0|25-34-183-3-293-4|
Etapa 5.2.1.7
The minor for a32 is the determinant with row 3 and column 2 deleted.
|25-34-121-1-293-4|
Etapa 5.2.1.8
Multiply element a32 by its cofactor.
2|25-34-121-1-293-4|
Etapa 5.2.1.9
The minor for a42 is the determinant with row 4 and column 2 deleted.
|25-34-121-1-183-3|
Etapa 5.2.1.10
Multiply element a42 by its cofactor.
0|25-34-121-1-183-3|
Etapa 5.2.1.11
Add the terms together.
-1|-121-1-183-3-293-4|+0|25-34-183-3-293-4|+2|25-34-121-1-293-4|+0|25-34-121-1-183-3|
-1|-121-1-183-3-293-4|+0|25-34-183-3-293-4|+2|25-34-121-1-293-4|+0|25-34-121-1-183-3|
Etapa 5.2.2
Multiplique 0 por |25-34-183-3-293-4|.
-1|-121-1-183-3-293-4|+0+2|25-34-121-1-293-4|+0|25-34-121-1-183-3|
Etapa 5.2.3
Multiplique 0 por |25-34-121-1-183-3|.
-1|-121-1-183-3-293-4|+0+2|25-34-121-1-293-4|+0
Etapa 5.2.4
Avalie |-121-1-183-3-293-4|.
Etapa 5.2.4.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Etapa 5.2.4.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Etapa 5.2.4.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Etapa 5.2.4.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|3-33-4|
Etapa 5.2.4.1.4
Multiply element a11 by its cofactor.
-12|3-33-4|
Etapa 5.2.4.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|-18-3-29-4|
Etapa 5.2.4.1.6
Multiply element a12 by its cofactor.
-1|-18-3-29-4|
Etapa 5.2.4.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|-183-293|
Etapa 5.2.4.1.8
Multiply element a13 by its cofactor.
-1|-183-293|
Etapa 5.2.4.1.9
Add the terms together.
-1(-12|3-33-4|-1|-18-3-29-4|-1|-183-293|)+0+2|25-34-121-1-293-4|+0
-1(-12|3-33-4|-1|-18-3-29-4|-1|-183-293|)+0+2|25-34-121-1-293-4|+0
Etapa 5.2.4.2
Avalie |3-33-4|.
Etapa 5.2.4.2.1
O determinante de uma matriz 2×2 pode ser encontrado ao usar a fórmula |abcd|=ad-cb.
-1(-12(3⋅-4-3⋅-3)-1|-18-3-29-4|-1|-183-293|)+0+2|25-34-121-1-293-4|+0
Etapa 5.2.4.2.2
Simplifique o determinante.
Etapa 5.2.4.2.2.1
Simplifique cada termo.
Etapa 5.2.4.2.2.1.1
Multiplique 3 por -4.
-1(-12(-12-3⋅-3)-1|-18-3-29-4|-1|-183-293|)+0+2|25-34-121-1-293-4|+0
Etapa 5.2.4.2.2.1.2
Multiplique -3 por -3.
-1(-12(-12+9)-1|-18-3-29-4|-1|-183-293|)+0+2|25-34-121-1-293-4|+0
-1(-12(-12+9)-1|-18-3-29-4|-1|-183-293|)+0+2|25-34-121-1-293-4|+0
Etapa 5.2.4.2.2.2
Some -12 e 9.
-1(-12⋅-3-1|-18-3-29-4|-1|-183-293|)+0+2|25-34-121-1-293-4|+0
-1(-12⋅-3-1|-18-3-29-4|-1|-183-293|)+0+2|25-34-121-1-293-4|+0
-1(-12⋅-3-1|-18-3-29-4|-1|-183-293|)+0+2|25-34-121-1-293-4|+0
Etapa 5.2.4.3
Avalie |-18-3-29-4|.
Etapa 5.2.4.3.1
O determinante de uma matriz 2×2 pode ser encontrado ao usar a fórmula |abcd|=ad-cb.
-1(-12⋅-3-1(-18⋅-4-(-29⋅-3))-1|-183-293|)+0+2|25-34-121-1-293-4|+0
Etapa 5.2.4.3.2
Simplifique o determinante.
Etapa 5.2.4.3.2.1
Simplifique cada termo.
Etapa 5.2.4.3.2.1.1
Multiplique -18 por -4.
-1(-12⋅-3-1(72-(-29⋅-3))-1|-183-293|)+0+2|25-34-121-1-293-4|+0
Etapa 5.2.4.3.2.1.2
Multiplique -(-29⋅-3).
Etapa 5.2.4.3.2.1.2.1
Multiplique -29 por -3.
-1(-12⋅-3-1(72-1⋅87)-1|-183-293|)+0+2|25-34-121-1-293-4|+0
Etapa 5.2.4.3.2.1.2.2
Multiplique -1 por 87.
-1(-12⋅-3-1(72-87)-1|-183-293|)+0+2|25-34-121-1-293-4|+0
-1(-12⋅-3-1(72-87)-1|-183-293|)+0+2|25-34-121-1-293-4|+0
-1(-12⋅-3-1(72-87)-1|-183-293|)+0+2|25-34-121-1-293-4|+0
Etapa 5.2.4.3.2.2
Subtraia 87 de 72.
-1(-12⋅-3-1⋅-15-1|-183-293|)+0+2|25-34-121-1-293-4|+0
-1(-12⋅-3-1⋅-15-1|-183-293|)+0+2|25-34-121-1-293-4|+0
-1(-12⋅-3-1⋅-15-1|-183-293|)+0+2|25-34-121-1-293-4|+0
Etapa 5.2.4.4
Avalie |-183-293|.
Etapa 5.2.4.4.1
O determinante de uma matriz 2×2 pode ser encontrado ao usar a fórmula |abcd|=ad-cb.
-1(-12⋅-3-1⋅-15-1(-18⋅3-(-29⋅3)))+0+2|25-34-121-1-293-4|+0
Etapa 5.2.4.4.2
Simplifique o determinante.
Etapa 5.2.4.4.2.1
Simplifique cada termo.
Etapa 5.2.4.4.2.1.1
Multiplique -18 por 3.
-1(-12⋅-3-1⋅-15-1(-54-(-29⋅3)))+0+2|25-34-121-1-293-4|+0
Etapa 5.2.4.4.2.1.2
Multiplique -(-29⋅3).
Etapa 5.2.4.4.2.1.2.1
Multiplique -29 por 3.
-1(-12⋅-3-1⋅-15-1(-54--87))+0+2|25-34-121-1-293-4|+0
Etapa 5.2.4.4.2.1.2.2
Multiplique -1 por -87.
-1(-12⋅-3-1⋅-15-1(-54+87))+0+2|25-34-121-1-293-4|+0
-1(-12⋅-3-1⋅-15-1(-54+87))+0+2|25-34-121-1-293-4|+0
-1(-12⋅-3-1⋅-15-1(-54+87))+0+2|25-34-121-1-293-4|+0
Etapa 5.2.4.4.2.2
Some -54 e 87.
-1(-12⋅-3-1⋅-15-1⋅33)+0+2|25-34-121-1-293-4|+0
-1(-12⋅-3-1⋅-15-1⋅33)+0+2|25-34-121-1-293-4|+0
-1(-12⋅-3-1⋅-15-1⋅33)+0+2|25-34-121-1-293-4|+0
Etapa 5.2.4.5
Simplifique o determinante.
Etapa 5.2.4.5.1
Simplifique cada termo.
Etapa 5.2.4.5.1.1
Multiplique -12 por -3.
-1(36-1⋅-15-1⋅33)+0+2|25-34-121-1-293-4|+0
Etapa 5.2.4.5.1.2
Multiplique -1 por -15.
-1(36+15-1⋅33)+0+2|25-34-121-1-293-4|+0
Etapa 5.2.4.5.1.3
Multiplique -1 por 33.
-1(36+15-33)+0+2|25-34-121-1-293-4|+0
-1(36+15-33)+0+2|25-34-121-1-293-4|+0
Etapa 5.2.4.5.2
Some 36 e 15.
-1(51-33)+0+2|25-34-121-1-293-4|+0
Etapa 5.2.4.5.3
Subtraia 33 de 51.
-1⋅18+0+2|25-34-121-1-293-4|+0
-1⋅18+0+2|25-34-121-1-293-4|+0
-1⋅18+0+2|25-34-121-1-293-4|+0
Etapa 5.2.5
Avalie |25-34-121-1-293-4|.
Etapa 5.2.5.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Etapa 5.2.5.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Etapa 5.2.5.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Etapa 5.2.5.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|1-13-4|
Etapa 5.2.5.1.4
Multiply element a11 by its cofactor.
25|1-13-4|
Etapa 5.2.5.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|-12-1-29-4|
Etapa 5.2.5.1.6
Multiply element a12 by its cofactor.
3|-12-1-29-4|
Etapa 5.2.5.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|-121-293|
Etapa 5.2.5.1.8
Multiply element a13 by its cofactor.
4|-121-293|
Etapa 5.2.5.1.9
Add the terms together.
-1⋅18+0+2(25|1-13-4|+3|-12-1-29-4|+4|-121-293|)+0
-1⋅18+0+2(25|1-13-4|+3|-12-1-29-4|+4|-121-293|)+0
Etapa 5.2.5.2
Avalie |1-13-4|.
Etapa 5.2.5.2.1
O determinante de uma matriz 2×2 pode ser encontrado ao usar a fórmula |abcd|=ad-cb.
-1⋅18+0+2(25(1⋅-4-3⋅-1)+3|-12-1-29-4|+4|-121-293|)+0
Etapa 5.2.5.2.2
Simplifique o determinante.
Etapa 5.2.5.2.2.1
Simplifique cada termo.
Etapa 5.2.5.2.2.1.1
Multiplique -4 por 1.
-1⋅18+0+2(25(-4-3⋅-1)+3|-12-1-29-4|+4|-121-293|)+0
Etapa 5.2.5.2.2.1.2
Multiplique -3 por -1.
-1⋅18+0+2(25(-4+3)+3|-12-1-29-4|+4|-121-293|)+0
-1⋅18+0+2(25(-4+3)+3|-12-1-29-4|+4|-121-293|)+0
Etapa 5.2.5.2.2.2
Some -4 e 3.
-1⋅18+0+2(25⋅-1+3|-12-1-29-4|+4|-121-293|)+0
-1⋅18+0+2(25⋅-1+3|-12-1-29-4|+4|-121-293|)+0
-1⋅18+0+2(25⋅-1+3|-12-1-29-4|+4|-121-293|)+0
Etapa 5.2.5.3
Avalie |-12-1-29-4|.
Etapa 5.2.5.3.1
O determinante de uma matriz 2×2 pode ser encontrado ao usar a fórmula |abcd|=ad-cb.
-1⋅18+0+2(25⋅-1+3(-12⋅-4-(-29⋅-1))+4|-121-293|)+0
Etapa 5.2.5.3.2
Simplifique o determinante.
Etapa 5.2.5.3.2.1
Simplifique cada termo.
Etapa 5.2.5.3.2.1.1
Multiplique -12 por -4.
-1⋅18+0+2(25⋅-1+3(48-(-29⋅-1))+4|-121-293|)+0
Etapa 5.2.5.3.2.1.2
Multiplique -(-29⋅-1).
Etapa 5.2.5.3.2.1.2.1
Multiplique -29 por -1.
-1⋅18+0+2(25⋅-1+3(48-1⋅29)+4|-121-293|)+0
Etapa 5.2.5.3.2.1.2.2
Multiplique -1 por 29.
-1⋅18+0+2(25⋅-1+3(48-29)+4|-121-293|)+0
-1⋅18+0+2(25⋅-1+3(48-29)+4|-121-293|)+0
-1⋅18+0+2(25⋅-1+3(48-29)+4|-121-293|)+0
Etapa 5.2.5.3.2.2
Subtraia 29 de 48.
-1⋅18+0+2(25⋅-1+3⋅19+4|-121-293|)+0
-1⋅18+0+2(25⋅-1+3⋅19+4|-121-293|)+0
-1⋅18+0+2(25⋅-1+3⋅19+4|-121-293|)+0
Etapa 5.2.5.4
Avalie |-121-293|.
Etapa 5.2.5.4.1
O determinante de uma matriz 2×2 pode ser encontrado ao usar a fórmula |abcd|=ad-cb.
-1⋅18+0+2(25⋅-1+3⋅19+4(-12⋅3-(-29⋅1)))+0
Etapa 5.2.5.4.2
Simplifique o determinante.
Etapa 5.2.5.4.2.1
Simplifique cada termo.
Etapa 5.2.5.4.2.1.1
Multiplique -12 por 3.
-1⋅18+0+2(25⋅-1+3⋅19+4(-36-(-29⋅1)))+0
Etapa 5.2.5.4.2.1.2
Multiplique -(-29⋅1).
Etapa 5.2.5.4.2.1.2.1
Multiplique -29 por 1.
-1⋅18+0+2(25⋅-1+3⋅19+4(-36--29))+0
Etapa 5.2.5.4.2.1.2.2
Multiplique -1 por -29.
-1⋅18+0+2(25⋅-1+3⋅19+4(-36+29))+0
-1⋅18+0+2(25⋅-1+3⋅19+4(-36+29))+0
-1⋅18+0+2(25⋅-1+3⋅19+4(-36+29))+0
Etapa 5.2.5.4.2.2
Some -36 e 29.
-1⋅18+0+2(25⋅-1+3⋅19+4⋅-7)+0
-1⋅18+0+2(25⋅-1+3⋅19+4⋅-7)+0
-1⋅18+0+2(25⋅-1+3⋅19+4⋅-7)+0
Etapa 5.2.5.5
Simplifique o determinante.
Etapa 5.2.5.5.1
Simplifique cada termo.
Etapa 5.2.5.5.1.1
Multiplique 25 por -1.
-1⋅18+0+2(-25+3⋅19+4⋅-7)+0
Etapa 5.2.5.5.1.2
Multiplique 3 por 19.
-1⋅18+0+2(-25+57+4⋅-7)+0
Etapa 5.2.5.5.1.3
Multiplique 4 por -7.
-1⋅18+0+2(-25+57-28)+0
-1⋅18+0+2(-25+57-28)+0
Etapa 5.2.5.5.2
Some -25 e 57.
-1⋅18+0+2(32-28)+0
Etapa 5.2.5.5.3
Subtraia 28 de 32.
-1⋅18+0+2⋅4+0
-1⋅18+0+2⋅4+0
-1⋅18+0+2⋅4+0
Etapa 5.2.6
Simplifique o determinante.
Etapa 5.2.6.1
Simplifique cada termo.
Etapa 5.2.6.1.1
Multiplique -1 por 18.
-18+0+2⋅4+0
Etapa 5.2.6.1.2
Multiplique 2 por 4.
-18+0+8+0
-18+0+8+0
Etapa 5.2.6.2
Some -18 e 0.
-18+8+0
Etapa 5.2.6.3
Some -18 e 8.
-10+0
Etapa 5.2.6.4
Some -10 e 0.
-10
-10
Dw=-10
Etapa 5.3
Use the formula to solve for w.
w=DwD
Etapa 5.4
Substitute -2 for D and -10 for Dw in the formula.
w=-10-2
Etapa 5.5
Divida -10 por -2.
w=5
w=5
Etapa 6
Etapa 6.1
Replace column 2 of the coefficient matrix that corresponds to the x-coefficients of the system with [25-12-18-29].
|025-341-121-13-183-31-293-4|
Etapa 6.2
Find the determinant.
Etapa 6.2.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Etapa 6.2.1.1
Consider the corresponding sign chart.
|+-+--+-++-+--+-+|
Etapa 6.2.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Etapa 6.2.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|-121-1-183-3-293-4|
Etapa 6.2.1.4
Multiply element a11 by its cofactor.
0|-121-1-183-3-293-4|
Etapa 6.2.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|11-133-313-4|
Etapa 6.2.1.6
Multiply element a12 by its cofactor.
-25|11-133-313-4|
Etapa 6.2.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|1-12-13-18-31-29-4|
Etapa 6.2.1.8
Multiply element a13 by its cofactor.
-3|1-12-13-18-31-29-4|
Etapa 6.2.1.9
The minor for a14 is the determinant with row 1 and column 4 deleted.
|1-1213-1831-293|
Etapa 6.2.1.10
Multiply element a14 by its cofactor.
-4|1-1213-1831-293|
Etapa 6.2.1.11
Add the terms together.
0|-121-1-183-3-293-4|-25|11-133-313-4|-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
0|-121-1-183-3-293-4|-25|11-133-313-4|-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
Etapa 6.2.2
Multiplique 0 por |-121-1-183-3-293-4|.
0-25|11-133-313-4|-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
Etapa 6.2.3
Avalie |11-133-313-4|.
Etapa 6.2.3.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Etapa 6.2.3.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Etapa 6.2.3.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Etapa 6.2.3.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|3-33-4|
Etapa 6.2.3.1.4
Multiply element a11 by its cofactor.
1|3-33-4|
Etapa 6.2.3.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|3-31-4|
Etapa 6.2.3.1.6
Multiply element a12 by its cofactor.
-1|3-31-4|
Etapa 6.2.3.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|3313|
Etapa 6.2.3.1.8
Multiply element a13 by its cofactor.
-1|3313|
Etapa 6.2.3.1.9
Add the terms together.
0-25(1|3-33-4|-1|3-31-4|-1|3313|)-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
0-25(1|3-33-4|-1|3-31-4|-1|3313|)-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
Etapa 6.2.3.2
Avalie |3-33-4|.
Etapa 6.2.3.2.1
O determinante de uma matriz 2×2 pode ser encontrado ao usar a fórmula |abcd|=ad-cb.
0-25(1(3⋅-4-3⋅-3)-1|3-31-4|-1|3313|)-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
Etapa 6.2.3.2.2
Simplifique o determinante.
Etapa 6.2.3.2.2.1
Simplifique cada termo.
Etapa 6.2.3.2.2.1.1
Multiplique 3 por -4.
0-25(1(-12-3⋅-3)-1|3-31-4|-1|3313|)-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
Etapa 6.2.3.2.2.1.2
Multiplique -3 por -3.
0-25(1(-12+9)-1|3-31-4|-1|3313|)-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
0-25(1(-12+9)-1|3-31-4|-1|3313|)-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
Etapa 6.2.3.2.2.2
Some -12 e 9.
0-25(1⋅-3-1|3-31-4|-1|3313|)-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
0-25(1⋅-3-1|3-31-4|-1|3313|)-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
0-25(1⋅-3-1|3-31-4|-1|3313|)-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
Etapa 6.2.3.3
Avalie |3-31-4|.
Etapa 6.2.3.3.1
O determinante de uma matriz 2×2 pode ser encontrado ao usar a fórmula |abcd|=ad-cb.
0-25(1⋅-3-1(3⋅-4-1⋅-3)-1|3313|)-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
Etapa 6.2.3.3.2
Simplifique o determinante.
Etapa 6.2.3.3.2.1
Simplifique cada termo.
Etapa 6.2.3.3.2.1.1
Multiplique 3 por -4.
0-25(1⋅-3-1(-12-1⋅-3)-1|3313|)-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
Etapa 6.2.3.3.2.1.2
Multiplique -1 por -3.
0-25(1⋅-3-1(-12+3)-1|3313|)-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
0-25(1⋅-3-1(-12+3)-1|3313|)-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
Etapa 6.2.3.3.2.2
Some -12 e 3.
0-25(1⋅-3-1⋅-9-1|3313|)-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
0-25(1⋅-3-1⋅-9-1|3313|)-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
0-25(1⋅-3-1⋅-9-1|3313|)-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
Etapa 6.2.3.4
Avalie |3313|.
Etapa 6.2.3.4.1
O determinante de uma matriz 2×2 pode ser encontrado ao usar a fórmula |abcd|=ad-cb.
0-25(1⋅-3-1⋅-9-1(3⋅3-1⋅3))-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
Etapa 6.2.3.4.2
Simplifique o determinante.
Etapa 6.2.3.4.2.1
Simplifique cada termo.
Etapa 6.2.3.4.2.1.1
Multiplique 3 por 3.
0-25(1⋅-3-1⋅-9-1(9-1⋅3))-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
Etapa 6.2.3.4.2.1.2
Multiplique -1 por 3.
0-25(1⋅-3-1⋅-9-1(9-3))-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
0-25(1⋅-3-1⋅-9-1(9-3))-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
Etapa 6.2.3.4.2.2
Subtraia 3 de 9.
0-25(1⋅-3-1⋅-9-1⋅6)-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
0-25(1⋅-3-1⋅-9-1⋅6)-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
0-25(1⋅-3-1⋅-9-1⋅6)-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
Etapa 6.2.3.5
Simplifique o determinante.
Etapa 6.2.3.5.1
Simplifique cada termo.
Etapa 6.2.3.5.1.1
Multiplique -3 por 1.
0-25(-3-1⋅-9-1⋅6)-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
Etapa 6.2.3.5.1.2
Multiplique -1 por -9.
0-25(-3+9-1⋅6)-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
Etapa 6.2.3.5.1.3
Multiplique -1 por 6.
0-25(-3+9-6)-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
0-25(-3+9-6)-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
Etapa 6.2.3.5.2
Some -3 e 9.
0-25(6-6)-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
Etapa 6.2.3.5.3
Subtraia 6 de 6.
0-25⋅0-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
0-25⋅0-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
0-25⋅0-3|1-12-13-18-31-29-4|-4|1-1213-1831-293|
Etapa 6.2.4
Avalie |1-12-13-18-31-29-4|.
Etapa 6.2.4.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Etapa 6.2.4.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Etapa 6.2.4.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Etapa 6.2.4.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|-18-3-29-4|
Etapa 6.2.4.1.4
Multiply element a11 by its cofactor.
1|-18-3-29-4|
Etapa 6.2.4.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|3-31-4|
Etapa 6.2.4.1.6
Multiply element a12 by its cofactor.
12|3-31-4|
Etapa 6.2.4.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|3-181-29|
Etapa 6.2.4.1.8
Multiply element a13 by its cofactor.
-1|3-181-29|
Etapa 6.2.4.1.9
Add the terms together.
0-25⋅0-3(1|-18-3-29-4|+12|3-31-4|-1|3-181-29|)-4|1-1213-1831-293|
0-25⋅0-3(1|-18-3-29-4|+12|3-31-4|-1|3-181-29|)-4|1-1213-1831-293|
Etapa 6.2.4.2
Avalie |-18-3-29-4|.
Etapa 6.2.4.2.1
O determinante de uma matriz 2×2 pode ser encontrado ao usar a fórmula |abcd|=ad-cb.
0-25⋅0-3(1(-18⋅-4-(-29⋅-3))+12|3-31-4|-1|3-181-29|)-4|1-1213-1831-293|
Etapa 6.2.4.2.2
Simplifique o determinante.
Etapa 6.2.4.2.2.1
Simplifique cada termo.
Etapa 6.2.4.2.2.1.1
Multiplique -18 por -4.
0-25⋅0-3(1(72-(-29⋅-3))+12|3-31-4|-1|3-181-29|)-4|1-1213-1831-293|
Etapa 6.2.4.2.2.1.2
Multiplique -(-29⋅-3).
Etapa 6.2.4.2.2.1.2.1
Multiplique -29 por -3.
0-25⋅0-3(1(72-1⋅87)+12|3-31-4|-1|3-181-29|)-4|1-1213-1831-293|
Etapa 6.2.4.2.2.1.2.2
Multiplique -1 por 87.
0-25⋅0-3(1(72-87)+12|3-31-4|-1|3-181-29|)-4|1-1213-1831-293|
0-25⋅0-3(1(72-87)+12|3-31-4|-1|3-181-29|)-4|1-1213-1831-293|
0-25⋅0-3(1(72-87)+12|3-31-4|-1|3-181-29|)-4|1-1213-1831-293|
Etapa 6.2.4.2.2.2
Subtraia 87 de 72.
0-25⋅0-3(1⋅-15+12|3-31-4|-1|3-181-29|)-4|1-1213-1831-293|
0-25⋅0-3(1⋅-15+12|3-31-4|-1|3-181-29|)-4|1-1213-1831-293|
0-25⋅0-3(1⋅-15+12|3-31-4|-1|3-181-29|)-4|1-1213-1831-293|
Etapa 6.2.4.3
Avalie |3-31-4|.
Etapa 6.2.4.3.1
O determinante de uma matriz 2×2 pode ser encontrado ao usar a fórmula |abcd|=ad-cb.
0-25⋅0-3(1⋅-15+12(3⋅-4-1⋅-3)-1|3-181-29|)-4|1-1213-1831-293|
Etapa 6.2.4.3.2
Simplifique o determinante.
Etapa 6.2.4.3.2.1
Simplifique cada termo.
Etapa 6.2.4.3.2.1.1
Multiplique 3 por -4.
0-25⋅0-3(1⋅-15+12(-12-1⋅-3)-1|3-181-29|)-4|1-1213-1831-293|
Etapa 6.2.4.3.2.1.2
Multiplique -1 por -3.
0-25⋅0-3(1⋅-15+12(-12+3)-1|3-181-29|)-4|1-1213-1831-293|
0-25⋅0-3(1⋅-15+12(-12+3)-1|3-181-29|)-4|1-1213-1831-293|
Etapa 6.2.4.3.2.2
Some -12 e 3.
0-25⋅0-3(1⋅-15+12⋅-9-1|3-181-29|)-4|1-1213-1831-293|
0-25⋅0-3(1⋅-15+12⋅-9-1|3-181-29|)-4|1-1213-1831-293|
0-25⋅0-3(1⋅-15+12⋅-9-1|3-181-29|)-4|1-1213-1831-293|
Etapa 6.2.4.4
Avalie |3-181-29|.
Etapa 6.2.4.4.1
O determinante de uma matriz 2×2 pode ser encontrado ao usar a fórmula |abcd|=ad-cb.
0-25⋅0-3(1⋅-15+12⋅-9-1(3⋅-29-1⋅-18))-4|1-1213-1831-293|
Etapa 6.2.4.4.2
Simplifique o determinante.
Etapa 6.2.4.4.2.1
Simplifique cada termo.
Etapa 6.2.4.4.2.1.1
Multiplique 3 por -29.
0-25⋅0-3(1⋅-15+12⋅-9-1(-87-1⋅-18))-4|1-1213-1831-293|
Etapa 6.2.4.4.2.1.2
Multiplique -1 por -18.
0-25⋅0-3(1⋅-15+12⋅-9-1(-87+18))-4|1-1213-1831-293|
0-25⋅0-3(1⋅-15+12⋅-9-1(-87+18))-4|1-1213-1831-293|
Etapa 6.2.4.4.2.2
Some -87 e 18.
0-25⋅0-3(1⋅-15+12⋅-9-1⋅-69)-4|1-1213-1831-293|
0-25⋅0-3(1⋅-15+12⋅-9-1⋅-69)-4|1-1213-1831-293|
0-25⋅0-3(1⋅-15+12⋅-9-1⋅-69)-4|1-1213-1831-293|
Etapa 6.2.4.5
Simplifique o determinante.
Etapa 6.2.4.5.1
Simplifique cada termo.
Etapa 6.2.4.5.1.1
Multiplique -15 por 1.
0-25⋅0-3(-15+12⋅-9-1⋅-69)-4|1-1213-1831-293|
Etapa 6.2.4.5.1.2
Multiplique 12 por -9.
0-25⋅0-3(-15-108-1⋅-69)-4|1-1213-1831-293|
Etapa 6.2.4.5.1.3
Multiplique -1 por -69.
0-25⋅0-3(-15-108+69)-4|1-1213-1831-293|
0-25⋅0-3(-15-108+69)-4|1-1213-1831-293|
Etapa 6.2.4.5.2
Subtraia 108 de -15.
0-25⋅0-3(-123+69)-4|1-1213-1831-293|
Etapa 6.2.4.5.3
Some -123 e 69.
0-25⋅0-3⋅-54-4|1-1213-1831-293|
0-25⋅0-3⋅-54-4|1-1213-1831-293|
0-25⋅0-3⋅-54-4|1-1213-1831-293|
Etapa 6.2.5
Avalie |1-1213-1831-293|.
Etapa 6.2.5.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Etapa 6.2.5.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Etapa 6.2.5.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Etapa 6.2.5.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|-183-293|
Etapa 6.2.5.1.4
Multiply element a11 by its cofactor.
1|-183-293|
Etapa 6.2.5.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|3313|
Etapa 6.2.5.1.6
Multiply element a12 by its cofactor.
12|3313|
Etapa 6.2.5.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|3-181-29|
Etapa 6.2.5.1.8
Multiply element a13 by its cofactor.
1|3-181-29|
Etapa 6.2.5.1.9
Add the terms together.
0-25⋅0-3⋅-54-4(1|-183-293|+12|3313|+1|3-181-29|)
0-25⋅0-3⋅-54-4(1|-183-293|+12|3313|+1|3-181-29|)
Etapa 6.2.5.2
Avalie |-183-293|.
Etapa 6.2.5.2.1
O determinante de uma matriz 2×2 pode ser encontrado ao usar a fórmula |abcd|=ad-cb.
0-25⋅0-3⋅-54-4(1(-18⋅3-(-29⋅3))+12|3313|+1|3-181-29|)
Etapa 6.2.5.2.2
Simplifique o determinante.
Etapa 6.2.5.2.2.1
Simplifique cada termo.
Etapa 6.2.5.2.2.1.1
Multiplique -18 por 3.
0-25⋅0-3⋅-54-4(1(-54-(-29⋅3))+12|3313|+1|3-181-29|)
Etapa 6.2.5.2.2.1.2
Multiplique -(-29⋅3).
Etapa 6.2.5.2.2.1.2.1
Multiplique -29 por 3.
0-25⋅0-3⋅-54-4(1(-54--87)+12|3313|+1|3-181-29|)
Etapa 6.2.5.2.2.1.2.2
Multiplique -1 por -87.
0-25⋅0-3⋅-54-4(1(-54+87)+12|3313|+1|3-181-29|)
0-25⋅0-3⋅-54-4(1(-54+87)+12|3313|+1|3-181-29|)
0-25⋅0-3⋅-54-4(1(-54+87)+12|3313|+1|3-181-29|)
Etapa 6.2.5.2.2.2
Some -54 e 87.
0-25⋅0-3⋅-54-4(1⋅33+12|3313|+1|3-181-29|)
0-25⋅0-3⋅-54-4(1⋅33+12|3313|+1|3-181-29|)
0-25⋅0-3⋅-54-4(1⋅33+12|3313|+1|3-181-29|)
Etapa 6.2.5.3
Avalie |3313|.
Etapa 6.2.5.3.1
O determinante de uma matriz 2×2 pode ser encontrado ao usar a fórmula |abcd|=ad-cb.
0-25⋅0-3⋅-54-4(1⋅33+12(3⋅3-1⋅3)+1|3-181-29|)
Etapa 6.2.5.3.2
Simplifique o determinante.
Etapa 6.2.5.3.2.1
Simplifique cada termo.
Etapa 6.2.5.3.2.1.1
Multiplique 3 por 3.
0-25⋅0-3⋅-54-4(1⋅33+12(9-1⋅3)+1|3-181-29|)
Etapa 6.2.5.3.2.1.2
Multiplique -1 por 3.
0-25⋅0-3⋅-54-4(1⋅33+12(9-3)+1|3-181-29|)
0-25⋅0-3⋅-54-4(1⋅33+12(9-3)+1|3-181-29|)
Etapa 6.2.5.3.2.2
Subtraia 3 de 9.
0-25⋅0-3⋅-54-4(1⋅33+12⋅6+1|3-181-29|)
0-25⋅0-3⋅-54-4(1⋅33+12⋅6+1|3-181-29|)
0-25⋅0-3⋅-54-4(1⋅33+12⋅6+1|3-181-29|)
Etapa 6.2.5.4
Avalie |3-181-29|.
Etapa 6.2.5.4.1
O determinante de uma matriz 2×2 pode ser encontrado ao usar a fórmula |abcd|=ad-cb.
0-25⋅0-3⋅-54-4(1⋅33+12⋅6+1(3⋅-29-1⋅-18))
Etapa 6.2.5.4.2
Simplifique o determinante.
Etapa 6.2.5.4.2.1
Simplifique cada termo.
Etapa 6.2.5.4.2.1.1
Multiplique 3 por -29.
0-25⋅0-3⋅-54-4(1⋅33+12⋅6+1(-87-1⋅-18))
Etapa 6.2.5.4.2.1.2
Multiplique -1 por -18.
0-25⋅0-3⋅-54-4(1⋅33+12⋅6+1(-87+18))
0-25⋅0-3⋅-54-4(1⋅33+12⋅6+1(-87+18))
Etapa 6.2.5.4.2.2
Some -87 e 18.
0-25⋅0-3⋅-54-4(1⋅33+12⋅6+1⋅-69)
0-25⋅0-3⋅-54-4(1⋅33+12⋅6+1⋅-69)
0-25⋅0-3⋅-54-4(1⋅33+12⋅6+1⋅-69)
Etapa 6.2.5.5
Simplifique o determinante.
Etapa 6.2.5.5.1
Simplifique cada termo.
Etapa 6.2.5.5.1.1
Multiplique 33 por 1.
0-25⋅0-3⋅-54-4(33+12⋅6+1⋅-69)
Etapa 6.2.5.5.1.2
Multiplique 12 por 6.
0-25⋅0-3⋅-54-4(33+72+1⋅-69)
Etapa 6.2.5.5.1.3
Multiplique -69 por 1.
0-25⋅0-3⋅-54-4(33+72-69)
0-25⋅0-3⋅-54-4(33+72-69)
Etapa 6.2.5.5.2
Some 33 e 72.
0-25⋅0-3⋅-54-4(105-69)
Etapa 6.2.5.5.3
Subtraia 69 de 105.
0-25⋅0-3⋅-54-4⋅36
0-25⋅0-3⋅-54-4⋅36
0-25⋅0-3⋅-54-4⋅36
Etapa 6.2.6
Simplifique o determinante.
Etapa 6.2.6.1
Simplifique cada termo.
Etapa 6.2.6.1.1
Multiplique -25 por 0.
0+0-3⋅-54-4⋅36
Etapa 6.2.6.1.2
Multiplique -3 por -54.
0+0+162-4⋅36
Etapa 6.2.6.1.3
Multiplique -4 por 36.
0+0+162-144
0+0+162-144
Etapa 6.2.6.2
Some 0 e 0.
0+162-144
Etapa 6.2.6.3
Some 0 e 162.
162-144
Etapa 6.2.6.4
Subtraia 144 de 162.
18
18
Dx=18
Etapa 6.3
Use the formula to solve for x.
x=DxD
Etapa 6.4
Substitute -2 for D and 18 for Dx in the formula.
x=18-2
Etapa 6.5
Divida 18 por -2.
x=-9
x=-9
Etapa 7
Etapa 7.1
Replace column 3 of the coefficient matrix that corresponds to the y-coefficients of the system with [25-12-18-29].
|0125410-12-13-2-18-310-29-4|
Etapa 7.2
Find the determinant.
Etapa 7.2.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in column 2 by its cofactor and add.
Etapa 7.2.1.1
Consider the corresponding sign chart.
|+-+--+-++-+--+-+|
Etapa 7.2.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Etapa 7.2.1.3
The minor for a12 is the determinant with row 1 and column 2 deleted.
|1-12-13-18-31-29-4|
Etapa 7.2.1.4
Multiply element a12 by its cofactor.
-1|1-12-13-18-31-29-4|
Etapa 7.2.1.5
The minor for a22 is the determinant with row 2 and column 2 deleted.
|02543-18-31-29-4|
Etapa 7.2.1.6
Multiply element a22 by its cofactor.
0|02543-18-31-29-4|
Etapa 7.2.1.7
The minor for a32 is the determinant with row 3 and column 2 deleted.
|02541-12-11-29-4|
Etapa 7.2.1.8
Multiply element a32 by its cofactor.
2|02541-12-11-29-4|
Etapa 7.2.1.9
The minor for a42 is the determinant with row 4 and column 2 deleted.
|02541-12-13-18-3|
Etapa 7.2.1.10
Multiply element a42 by its cofactor.
0|02541-12-13-18-3|
Etapa 7.2.1.11
Add the terms together.
-1|1-12-13-18-31-29-4|+0|02543-18-31-29-4|+2|02541-12-11-29-4|+0|02541-12-13-18-3|
-1|1-12-13-18-31-29-4|+0|02543-18-31-29-4|+2|02541-12-11-29-4|+0|02541-12-13-18-3|
Etapa 7.2.2
Multiplique 0 por |02543-18-31-29-4|.
-1|1-12-13-18-31-29-4|+0+2|02541-12-11-29-4|+0|02541-12-13-18-3|
Etapa 7.2.3
Multiplique 0 por |02541-12-13-18-3|.
-1|1-12-13-18-31-29-4|+0+2|02541-12-11-29-4|+0
Etapa 7.2.4
Avalie |1-12-13-18-31-29-4|.
Etapa 7.2.4.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Etapa 7.2.4.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Etapa 7.2.4.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Etapa 7.2.4.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|-18-3-29-4|
Etapa 7.2.4.1.4
Multiply element a11 by its cofactor.
1|-18-3-29-4|
Etapa 7.2.4.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|3-31-4|
Etapa 7.2.4.1.6
Multiply element a12 by its cofactor.
12|3-31-4|
Etapa 7.2.4.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|3-181-29|
Etapa 7.2.4.1.8
Multiply element a13 by its cofactor.
-1|3-181-29|
Etapa 7.2.4.1.9
Add the terms together.
-1(1|-18-3-29-4|+12|3-31-4|-1|3-181-29|)+0+2|02541-12-11-29-4|+0
-1(1|-18-3-29-4|+12|3-31-4|-1|3-181-29|)+0+2|02541-12-11-29-4|+0
Etapa 7.2.4.2
Avalie |-18-3-29-4|.
Etapa 7.2.4.2.1
O determinante de uma matriz 2×2 pode ser encontrado ao usar a fórmula |abcd|=ad-cb.
-1(1(-18⋅-4-(-29⋅-3))+12|3-31-4|-1|3-181-29|)+0+2|02541-12-11-29-4|+0
Etapa 7.2.4.2.2
Simplifique o determinante.
Etapa 7.2.4.2.2.1
Simplifique cada termo.
Etapa 7.2.4.2.2.1.1
Multiplique -18 por -4.
-1(1(72-(-29⋅-3))+12|3-31-4|-1|3-181-29|)+0+2|02541-12-11-29-4|+0
Etapa 7.2.4.2.2.1.2
Multiplique -(-29⋅-3).
Etapa 7.2.4.2.2.1.2.1
Multiplique -29 por -3.
-1(1(72-1⋅87)+12|3-31-4|-1|3-181-29|)+0+2|02541-12-11-29-4|+0
Etapa 7.2.4.2.2.1.2.2
Multiplique -1 por 87.
-1(1(72-87)+12|3-31-4|-1|3-181-29|)+0+2|02541-12-11-29-4|+0
-1(1(72-87)+12|3-31-4|-1|3-181-29|)+0+2|02541-12-11-29-4|+0
-1(1(72-87)+12|3-31-4|-1|3-181-29|)+0+2|02541-12-11-29-4|+0
Etapa 7.2.4.2.2.2
Subtraia 87 de 72.
-1(1⋅-15+12|3-31-4|-1|3-181-29|)+0+2|02541-12-11-29-4|+0
-1(1⋅-15+12|3-31-4|-1|3-181-29|)+0+2|02541-12-11-29-4|+0
-1(1⋅-15+12|3-31-4|-1|3-181-29|)+0+2|02541-12-11-29-4|+0
Etapa 7.2.4.3
Avalie |3-31-4|.
Etapa 7.2.4.3.1
O determinante de uma matriz 2×2 pode ser encontrado ao usar a fórmula |abcd|=ad-cb.
-1(1⋅-15+12(3⋅-4-1⋅-3)-1|3-181-29|)+0+2|02541-12-11-29-4|+0
Etapa 7.2.4.3.2
Simplifique o determinante.
Etapa 7.2.4.3.2.1
Simplifique cada termo.
Etapa 7.2.4.3.2.1.1
Multiplique 3 por -4.
-1(1⋅-15+12(-12-1⋅-3)-1|3-181-29|)+0+2|02541-12-11-29-4|+0
Etapa 7.2.4.3.2.1.2
Multiplique -1 por -3.
-1(1⋅-15+12(-12+3)-1|3-181-29|)+0+2|02541-12-11-29-4|+0
-1(1⋅-15+12(-12+3)-1|3-181-29|)+0+2|02541-12-11-29-4|+0
Etapa 7.2.4.3.2.2
Some -12 e 3.
-1(1⋅-15+12⋅-9-1|3-181-29|)+0+2|02541-12-11-29-4|+0
-1(1⋅-15+12⋅-9-1|3-181-29|)+0+2|02541-12-11-29-4|+0
-1(1⋅-15+12⋅-9-1|3-181-29|)+0+2|02541-12-11-29-4|+0
Etapa 7.2.4.4
Avalie |3-181-29|.
Etapa 7.2.4.4.1
O determinante de uma matriz 2×2 pode ser encontrado ao usar a fórmula |abcd|=ad-cb.
-1(1⋅-15+12⋅-9-1(3⋅-29-1⋅-18))+0+2|02541-12-11-29-4|+0
Etapa 7.2.4.4.2
Simplifique o determinante.
Etapa 7.2.4.4.2.1
Simplifique cada termo.
Etapa 7.2.4.4.2.1.1
Multiplique 3 por -29.
-1(1⋅-15+12⋅-9-1(-87-1⋅-18))+0+2|02541-12-11-29-4|+0
Etapa 7.2.4.4.2.1.2
Multiplique -1 por -18.
-1(1⋅-15+12⋅-9-1(-87+18))+0+2|02541-12-11-29-4|+0
-1(1⋅-15+12⋅-9-1(-87+18))+0+2|02541-12-11-29-4|+0
Etapa 7.2.4.4.2.2
Some -87 e 18.
-1(1⋅-15+12⋅-9-1⋅-69)+0+2|02541-12-11-29-4|+0
-1(1⋅-15+12⋅-9-1⋅-69)+0+2|02541-12-11-29-4|+0
-1(1⋅-15+12⋅-9-1⋅-69)+0+2|02541-12-11-29-4|+0
Etapa 7.2.4.5
Simplifique o determinante.
Etapa 7.2.4.5.1
Simplifique cada termo.
Etapa 7.2.4.5.1.1
Multiplique -15 por 1.
-1(-15+12⋅-9-1⋅-69)+0+2|02541-12-11-29-4|+0
Etapa 7.2.4.5.1.2
Multiplique 12 por -9.
-1(-15-108-1⋅-69)+0+2|02541-12-11-29-4|+0
Etapa 7.2.4.5.1.3
Multiplique -1 por -69.
-1(-15-108+69)+0+2|02541-12-11-29-4|+0
-1(-15-108+69)+0+2|02541-12-11-29-4|+0
Etapa 7.2.4.5.2
Subtraia 108 de -15.
-1(-123+69)+0+2|02541-12-11-29-4|+0
Etapa 7.2.4.5.3
Some -123 e 69.
-1⋅-54+0+2|02541-12-11-29-4|+0
-1⋅-54+0+2|02541-12-11-29-4|+0
-1⋅-54+0+2|02541-12-11-29-4|+0
Etapa 7.2.5
Avalie |02541-12-11-29-4|.
Etapa 7.2.5.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Etapa 7.2.5.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Etapa 7.2.5.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Etapa 7.2.5.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|-12-1-29-4|
Etapa 7.2.5.1.4
Multiply element a11 by its cofactor.
0|-12-1-29-4|
Etapa 7.2.5.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|1-11-4|
Etapa 7.2.5.1.6
Multiply element a12 by its cofactor.
-25|1-11-4|
Etapa 7.2.5.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|1-121-29|
Etapa 7.2.5.1.8
Multiply element a13 by its cofactor.
4|1-121-29|
Etapa 7.2.5.1.9
Add the terms together.
-1⋅-54+0+2(0|-12-1-29-4|-25|1-11-4|+4|1-121-29|)+0
-1⋅-54+0+2(0|-12-1-29-4|-25|1-11-4|+4|1-121-29|)+0
Etapa 7.2.5.2
Multiplique 0 por |-12-1-29-4|.
-1⋅-54+0+2(0-25|1-11-4|+4|1-121-29|)+0
Etapa 7.2.5.3
Avalie |1-11-4|.
Etapa 7.2.5.3.1
O determinante de uma matriz 2×2 pode ser encontrado ao usar a fórmula |abcd|=ad-cb.
-1⋅-54+0+2(0-25(1⋅-4-1⋅-1)+4|1-121-29|)+0
Etapa 7.2.5.3.2
Simplifique o determinante.
Etapa 7.2.5.3.2.1
Simplifique cada termo.
Etapa 7.2.5.3.2.1.1
Multiplique -4 por 1.
-1⋅-54+0+2(0-25(-4-1⋅-1)+4|1-121-29|)+0
Etapa 7.2.5.3.2.1.2
Multiplique -1 por -1.
-1⋅-54+0+2(0-25(-4+1)+4|1-121-29|)+0
-1⋅-54+0+2(0-25(-4+1)+4|1-121-29|)+0
Etapa 7.2.5.3.2.2
Some -4 e 1.
-1⋅-54+0+2(0-25⋅-3+4|1-121-29|)+0
-1⋅-54+0+2(0-25⋅-3+4|1-121-29|)+0
-1⋅-54+0+2(0-25⋅-3+4|1-121-29|)+0
Etapa 7.2.5.4
Avalie |1-121-29|.
Etapa 7.2.5.4.1
O determinante de uma matriz 2×2 pode ser encontrado ao usar a fórmula |abcd|=ad-cb.
-1⋅-54+0+2(0-25⋅-3+4(1⋅-29-1⋅-12))+0
Etapa 7.2.5.4.2
Simplifique o determinante.
Etapa 7.2.5.4.2.1
Simplifique cada termo.
Etapa 7.2.5.4.2.1.1
Multiplique por .
Etapa 7.2.5.4.2.1.2
Multiplique por .
Etapa 7.2.5.4.2.2
Some e .
Etapa 7.2.5.5
Simplifique o determinante.
Etapa 7.2.5.5.1
Simplifique cada termo.
Etapa 7.2.5.5.1.1
Multiplique por .
Etapa 7.2.5.5.1.2
Multiplique por .
Etapa 7.2.5.5.2
Some e .
Etapa 7.2.5.5.3
Subtraia de .
Etapa 7.2.6
Simplifique o determinante.
Etapa 7.2.6.1
Simplifique cada termo.
Etapa 7.2.6.1.1
Multiplique por .
Etapa 7.2.6.1.2
Multiplique por .
Etapa 7.2.6.2
Some e .
Etapa 7.2.6.3
Some e .
Etapa 7.2.6.4
Some e .
Etapa 7.3
Use the formula to solve for .
Etapa 7.4
Substitute for and for in the formula.
Etapa 7.5
Divida por .
Etapa 8
Etapa 8.1
Replace column of the coefficient matrix that corresponds to the -coefficients of the system with .
Etapa 8.2
Find the determinant.
Etapa 8.2.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in column by its cofactor and add.
Etapa 8.2.1.1
Consider the corresponding sign chart.
Etapa 8.2.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Etapa 8.2.1.3
The minor for is the determinant with row and column deleted.
Etapa 8.2.1.4
Multiply element by its cofactor.
Etapa 8.2.1.5
The minor for is the determinant with row and column deleted.
Etapa 8.2.1.6
Multiply element by its cofactor.
Etapa 8.2.1.7
The minor for is the determinant with row and column deleted.
Etapa 8.2.1.8
Multiply element by its cofactor.
Etapa 8.2.1.9
The minor for is the determinant with row and column deleted.
Etapa 8.2.1.10
Multiply element by its cofactor.
Etapa 8.2.1.11
Add the terms together.
Etapa 8.2.2
Multiplique por .
Etapa 8.2.3
Multiplique por .
Etapa 8.2.4
Avalie .
Etapa 8.2.4.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Etapa 8.2.4.1.1
Consider the corresponding sign chart.
Etapa 8.2.4.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Etapa 8.2.4.1.3
The minor for is the determinant with row and column deleted.
Etapa 8.2.4.1.4
Multiply element by its cofactor.
Etapa 8.2.4.1.5
The minor for is the determinant with row and column deleted.
Etapa 8.2.4.1.6
Multiply element by its cofactor.
Etapa 8.2.4.1.7
The minor for is the determinant with row and column deleted.
Etapa 8.2.4.1.8
Multiply element by its cofactor.
Etapa 8.2.4.1.9
Add the terms together.
Etapa 8.2.4.2
Avalie .
Etapa 8.2.4.2.1
O determinante de uma matriz pode ser encontrado ao usar a fórmula .
Etapa 8.2.4.2.2
Simplifique o determinante.
Etapa 8.2.4.2.2.1
Simplifique cada termo.
Etapa 8.2.4.2.2.1.1
Multiplique por .
Etapa 8.2.4.2.2.1.2
Multiplique por .
Etapa 8.2.4.2.2.2
Some e .
Etapa 8.2.4.3
Avalie .
Etapa 8.2.4.3.1
O determinante de uma matriz pode ser encontrado ao usar a fórmula .
Etapa 8.2.4.3.2
Simplifique o determinante.
Etapa 8.2.4.3.2.1
Simplifique cada termo.
Etapa 8.2.4.3.2.1.1
Multiplique por .
Etapa 8.2.4.3.2.1.2
Multiplique por .
Etapa 8.2.4.3.2.2
Some e .
Etapa 8.2.4.4
Avalie .
Etapa 8.2.4.4.1
O determinante de uma matriz pode ser encontrado ao usar a fórmula .
Etapa 8.2.4.4.2
Simplifique o determinante.
Etapa 8.2.4.4.2.1
Simplifique cada termo.
Etapa 8.2.4.4.2.1.1
Multiplique por .
Etapa 8.2.4.4.2.1.2
Multiplique por .
Etapa 8.2.4.4.2.2
Subtraia de .
Etapa 8.2.4.5
Simplifique o determinante.
Etapa 8.2.4.5.1
Simplifique cada termo.
Etapa 8.2.4.5.1.1
Multiplique por .
Etapa 8.2.4.5.1.2
Multiplique por .
Etapa 8.2.4.5.1.3
Multiplique por .
Etapa 8.2.4.5.2
Some e .
Etapa 8.2.4.5.3
Subtraia de .
Etapa 8.2.5
Avalie .
Etapa 8.2.5.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Etapa 8.2.5.1.1
Consider the corresponding sign chart.
Etapa 8.2.5.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Etapa 8.2.5.1.3
The minor for is the determinant with row and column deleted.
Etapa 8.2.5.1.4
Multiply element by its cofactor.
Etapa 8.2.5.1.5
The minor for is the determinant with row and column deleted.
Etapa 8.2.5.1.6
Multiply element by its cofactor.
Etapa 8.2.5.1.7
The minor for is the determinant with row and column deleted.
Etapa 8.2.5.1.8
Multiply element by its cofactor.
Etapa 8.2.5.1.9
Add the terms together.
Etapa 8.2.5.2
Multiplique por .
Etapa 8.2.5.3
Avalie .
Etapa 8.2.5.3.1
O determinante de uma matriz pode ser encontrado ao usar a fórmula .
Etapa 8.2.5.3.2
Simplifique o determinante.
Etapa 8.2.5.3.2.1
Simplifique cada termo.
Etapa 8.2.5.3.2.1.1
Multiplique por .
Etapa 8.2.5.3.2.1.2
Multiplique por .
Etapa 8.2.5.3.2.2
Some e .
Etapa 8.2.5.4
Avalie .
Etapa 8.2.5.4.1
O determinante de uma matriz pode ser encontrado ao usar a fórmula .
Etapa 8.2.5.4.2
Simplifique o determinante.
Etapa 8.2.5.4.2.1
Simplifique cada termo.
Etapa 8.2.5.4.2.1.1
Multiplique por .
Etapa 8.2.5.4.2.1.2
Multiplique por .
Etapa 8.2.5.4.2.2
Subtraia de .
Etapa 8.2.5.5
Simplifique o determinante.
Etapa 8.2.5.5.1
Simplifique cada termo.
Etapa 8.2.5.5.1.1
Multiplique por .
Etapa 8.2.5.5.1.2
Multiplique por .
Etapa 8.2.5.5.2
Subtraia de .
Etapa 8.2.5.5.3
Some e .
Etapa 8.2.6
Simplifique o determinante.
Etapa 8.2.6.1
Simplifique cada termo.
Etapa 8.2.6.1.1
Multiplique por .
Etapa 8.2.6.1.2
Multiplique por .
Etapa 8.2.6.2
Some e .
Etapa 8.2.6.3
Subtraia de .
Etapa 8.2.6.4
Some e .
Etapa 8.3
Use the formula to solve for .
Etapa 8.4
Substitute for and for in the formula.
Etapa 8.5
Divida por .
Etapa 9
Liste a solução para o sistema de equações.